Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gamer2016 Offical
Xem chi tiết
A Nguyễn
Xem chi tiết
Phạm Hồ Thanh Quang
13 tháng 7 2017 lúc 8:55

Bài 1:
a) (2x - y) + (2x - y) + (2x - y) + 3y
= 3(2x - y) + 3y
= 3(2x - y + 3y)
= 3(2x + 2y)
= 3.2(x + y)
= 6(x + y)

b) (x + 2y) + (x - 2y) + (8x - 3y)
= x + 2y + x - 2y + 8x - 3y
= 9x - 3y
= 3(3x - y)

c) (x + 2y) - 2(x - 2y) - (2x - 3y)
= x + 2y - 2x + 4y - 2x + 3y
= 9y - 3x
= 3(3y - x)

Bài 2:
M + 2(x2 - 4y2) + Q = 6x2 - 4xy + 5y2 + P
M + 2x2 - 8y2   -3x2 + 7xy - 2y2 = 6x2 - 4xy + 5y2 + 9x2 - 6xy + 3y2
M + 2x2 - 3x2 - 6x2 - 9x2 - 8y2 - 2y2 - 5y2 - 3y2 + 7xy + 4xy + 6xy = 0
M - 16x2 - 18y2 + 17xy = 0
M = 16x2 + 18y2 - 17xy

Đức Cường
Xem chi tiết
Chu Công Đức
22 tháng 2 2020 lúc 8:56

\(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow\left(2x^2+2y^2+4xy\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow2\left(x^2+y^2+2xy\right)+\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

Vì \(\left(x+y\right)^2\ge0\)\(\left(x+1\right)^2\ge0\)\(\left(y-1\right)^2\ge0\)\(\forall x,y\)

\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-y\\x=-1\\y=1\end{cases}}\)

Vậy \(x=-1\)và \(y=1\)

Khách vãng lai đã xóa
Như Quỳnh Phạm
Xem chi tiết
Edogawa Conan
6 tháng 9 2021 lúc 22:49

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
6 tháng 9 2021 lúc 22:51

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Edogawa Conan
6 tháng 9 2021 lúc 22:51

d)3x2+3y2+3xy-3x+3y+3=0

⇔ 6x2+6y2+6xy-6x+6y+6=0

⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Mai Ngọc Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2023 lúc 19:15

Sửa đề: \(3x^2+3y^2+4xy+2x-2y+2=0\)

=>\(2x^2+4xy+2y^2+x^2+2x+1+y^2-2y+1=0\)

=>\(2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
=>\(\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

VŨ ĐỨC CƯỜNG
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2020 lúc 15:30

\(\Leftrightarrow9x^2+9y^2+12xy+6x-6y+6=0\)

\(\Leftrightarrow\left(9x^2+4y^2+1+12xy+6x+4y\right)+5\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(3x+2y+1\right)^2+5\left(y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Khách vãng lai đã xóa
전 정국
Xem chi tiết
Linh Khánh
29 tháng 6 2018 lúc 14:29

P = 3x2 - 2x + 3y2 - 2y + 6xy +2018

P = 3(x2 + y2 + 2xy) - 2(x + y) + 2018

P = 3[(x + y)2 - 2xy + 2xy] -2.5 + 2018

P = 3[ 52 +0] - 10 + 2018

P = 3.25 + 2008

P = 75 + 2008

P = 2083

Nguyễn Minh Châu
Xem chi tiết
☆MĭηɦღAηɦ❄
21 tháng 8 2020 lúc 9:18

\(3x^2+y^2+4xy-8x-2y=0\)

\(\Leftrightarrow4x^2+4xy+y^2-4x-2y+1-x^2-4x-4=-3\)

\(\Leftrightarrow\left(2x+y-1\right)^2-\left(x+2\right)^2=-3\)

\(\Leftrightarrow\left(2x+y-1-x-2\right)\left(2x+y-1+x+2\right)=-3\)

\(\Leftrightarrow\left(x+y-3\right)\left(3x+y+1\right)=-3\)

Do \(x,y\in Z\Rightarrow x+y-3;3x+y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Bạn lập bảng xét ước rồi tìm ra x,y thỏa mãn

Vậy \(\left(x,y\right)=\left(0,2\right);\left(-4,8\right);\left(-4;10\right);\left(0,0\right)\)

Khách vãng lai đã xóa
Vũ Nguyễn Linh Chi
Xem chi tiết