P = 3x2 - 2x + 3y2 - 2y + 6xy +2018
P = 3(x2 + y2 + 2xy) - 2(x + y) + 2018
P = 3[(x + y)2 - 2xy + 2xy] -2.5 + 2018
P = 3[ 52 +0] - 10 + 2018
P = 3.25 + 2008
P = 75 + 2008
P = 2083
P = 3x2 - 2x + 3y2 - 2y + 6xy +2018
P = 3(x2 + y2 + 2xy) - 2(x + y) + 2018
P = 3[(x + y)2 - 2xy + 2xy] -2.5 + 2018
P = 3[ 52 +0] - 10 + 2018
P = 3.25 + 2008
P = 75 + 2008
P = 2083
1) Cho x + y = 5. Tính:
\(P=3x^2-2x+3y^2-2y+6xy-100\\ Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
thức hiên phép nhân:
a)\(3x^2\left(2x^3-x+5\right)=6x^5-3x^3+15x^2\)
b)\(\left(4xy+3y-5x\right)x^2y=4x^3y^2+3x^2y^2-5x^3y\)
cho x + y = 5 tính \(3x^2-2x+3y^2-2y+6xy-100\)
1, ( x+1/3)^3
2, ( 2x+y^2)^3
3, ( 1/2x^2+1/3y)^3
4, ( 3x^2-2y)^3
5, ( 2/3x^2-1/2y)^3
6, ( 2x+1/2)^3
7, ( x-3)^3
8, ( x+1).(X^2+3x+9)
9, ( x-3).( x^2+3x+9)
10, ( x-2).( x^2+2x+4)
11, ( x+4).( x^2-4x+16)
12, ( x-3y).( x^2+3xy+9y^2)
13, ( x^2-1/3). ( x^4+1/3x^2+1/9)
14, ( 1/3x+2y).( 1/9x^2-2/3xy+4y^2)
Đưa về HĐT
1.Khai triển các hằng đẳng thức sau ^^
a) (2x^3-y^2)^3
b) (x-3y)(x^2+3xy+9y^2)
c) ( x+2y+z) (x+2y-z)
d) (2x^3y -0,5x^2)^3
e) (x^2-3).(x^4+3x^2+9)
f) (2x-1)(4x^2+2x+1)
Bài 1 .phân tích các đa thức sau :
a.\(z^2-\left(x-1\right)^2+2\left(x-1\right)\)
b.\(xz-yz-x^2+2xy-y^2\)
c.\(a^2x+aby-2abx-2b^2y\)
d.\(ab\left(x^2+y^2\right)+xy\left(a^2+b^2\right)\)
e.\(x^2+2xy+y^2-2x-2y+1\)
g.\(3x-3y+x^2-2xy+y^2\)
h.\(x^3-y^3-3x+3y\)
i.\(x^2-2xy+y^2-z^2\)
Bài 2: Tìm x, biết
a.\(x\left(2x-7\right)-4x+14=0\)
b.\(2x^3+3x^2+2x+3=0\)
Bài 1 :Tìm x,y ,biết :
a) \(\left(3x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=2014\)
b) \(5x^2+4xy+4y^2+4x+1=0\)
Bài 2 : Chứng minh rằng các biểu thức sau không phụ thuộc vào các biến x,y:
D = \(\left(2x-3y\right)^2-\left(3y-2\right)\left(3y+2\right)-\left(1-2x\right)^2+4x\left(3y-1\right)\)
Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc hiệu
f) \(2xy^2+x^2y^2+1\)
g) \(\left(3x-2y\right)^2+2\left(3x-2y\right)+1\)
h) \(16-8\left(x-3y\right)+\left(x-3y\right)^2\)
i) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
j) \(\left(x+y-z\right)^2+\left(y-z\right)^2+2\left(x+y-z\right)\left(z-y\right)\)
Tính
\(1.\left(x+2y\right)^2\)
\(2.\left(2x+3y\right)^2\)
\(3.\left(x+\frac{1}{3}\right)^4\)
\(4.\left(2x+y^2\right)^3\)
\(5.\left(\frac{x}{2}-2y\right)\)
\(6.\left(\sqrt{2x-y}\right)^4\)
\(7.\left(x+1\right)\left(x^2-x+1\right)\)
\(8.\left(x-3\right)\left(x^2+3x+9\right)\)