Giải hệ pt
{ \(y^2-x^2+2xy+2x-2=0\)
{ \(x^2-2xy+x-2y+3=0\)
giải hệ pt: \(\left\{{}\begin{matrix}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
giải hệ: x2-2xy+x-2y+3=0 và y2-x2+2xy+2x-2=0
Giải hệ phương trình \(\hept{\begin{cases}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{cases}}\)
Rút y từ phương trình đầu thế vô phương trình dưới rồi quy đồng lên được.
(x² + 5x + 1)² = 0
A ali : em có cách khác :D
Cộng 2 vế của 2 pt trên lại với nhau ta được
\(x^2-2xy+x-2y+3+y^2-x^2+2xy+2x-2=0\)
\(\Leftrightarrow y^2-2y+3x+1=0\)
\(\Leftrightarrow\left(y-1\right)^2=-3x\)
\(\Leftrightarrow\hept{\begin{cases}x\le0\\y=\sqrt{-3x}+1\end{cases}\left(h\right)\hept{\begin{cases}x\le0\\y=-\sqrt{-3x}+1\end{cases}}}\)
Đến đây thế vào pt (2) sẽ tìm đc x
Nói chung làm cách a ali sẽ dễ hơn . cách của tớ cũng là 1 cách nhưng không được hay cho lắm :V
em quy đồng và khử mẫu lên nó ra thế này:
Pt (1) tương đương: \(x^2+x+3=2y\left(x+1\right)\Leftrightarrow y=\frac{x^2+x+3}{2\left(x+1\right)}\)
Thay vào pt (2) ta có: \(\left[\frac{x^2+x+3}{2\left(x+1\right)}\right]^2-x^2+2x.\frac{x^2+x+3}{2\left(x+1\right)}+2x-2=0\)
\(\Leftrightarrow\frac{\left(x^2+x+3\right)^2}{4\left(x+1\right)^2}-x^2+\frac{x\left(x^2+x+3\right)}{x+1}+2x-2=0\)
\(\Leftrightarrow\frac{\left(x^2+x+3\right)^2+4x\left(x^2+x+3\right)\left(x+1\right)-4\left(x+1\right)^2x}{4\left(x+1\right)^2}=0\)
\(\Leftrightarrow\left(x^2+x+3\right)^2+4x\left(x^2+x+3\right)\left(x+1\right)-4\left(x+1\right)^2x=0\)
thì khai triển tiếp hai sao ạ?
Giải hệ phương trình: \(\hept{\begin{cases}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{cases}}\)
Giải hệ bằng phương pháp phân tích đa thức thành nhân tử
a) \(\left\{{}\begin{matrix}xy+x-2=0\\2x^3-x^2y+x^2+y^2-2xy-y=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-2xy+x+y=0\\x^4-4x^2y+3x^2+y^2=0\end{matrix}\right.\)
a.
\(2x^3-x^2y+x^2+y^2-2xy-y=0\)
\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)
Thế vào pt đầu:
\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
\(x^2-2xy+x=-y\)
Thế vào \(y^2\) ở pt dưới:
\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)
\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)
\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)
\(\Leftrightarrow-2y+4y^2-8y+4=0\)
\(\Leftrightarrow...\)
giải hệ phương trình\(\left\{{}\begin{matrix}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
Ta lấy pt thứ 2 cộng 2 lần với pt thứ nhất ta được:
\(x^2+2xy+y^2+4x-4y+4=0\)
Hay: \(\left(x-y+2\right)^2=0\)
Ta suy ra \(y=x+2\). Thay trở lại pt thứ nhất của hệ ta được:
\(x^2-2x\left(x+2\right)+x-2\left(x+2\right)+3=0\)
Trương đương với: \(x^2+5x+1=0\)
Vì vậy có nghiệm: \(x=\frac{-5\pm\sqrt{21}}{2}\).
Do đó: \(y=x+2=\frac{-1\pm\sqrt{21}}{2}\)
Vậy hệ pt đã cho có 2 nghiệm \(\left(x,y\right)=\left(\frac{-5+\sqrt{21}}{2};\frac{-1+\sqrt{21}}{2}\right);\left(\frac{-5-\sqrt{21}}{2};\frac{-1-\sqrt{21}}{2}\right)\)
giải hệ phương trình:\(\left\{{}\begin{matrix}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-4xy+2x-4y+6=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2-2xy+4\left(x-y\right)+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+4\left(x-y\right)+4=0\)
\(\Leftrightarrow\left(x-y+2\right)^2=0\)
\(\Rightarrow y=x+2\)
\(\Rightarrow x^2-2x\left(x+2\right)+x-2\left(x+2\right)+3=0\)
\(\Leftrightarrow...\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}3y=\dfrac{y^2+2}{x^2}\\3x=\dfrac{x^2+2}{y^2}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x^2y+xy^2+x-5y=0\\2xy+y^2-5y+1=0\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+y^2+xy+2y+x=2\\2x^2-y^2-2y-2=0\end{matrix}\right.\)
ý a ở đây bn https://hoc247.net/hoi-dap/toan-10/giai-he-pt-3x-x-2-2-y-2-va-3y-y-2-2-x-2-faq371128.html
b.
Với \(xy=0\) không là nghiệm
Với \(xy\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2+1\right)=y\left(5-x^2\right)\\y^2+1=y\left(5-2x\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y^2+1}{y}=\dfrac{5-x^2}{x}\\\dfrac{y^2+1}{y}=5-2x\end{matrix}\right.\)
\(\Rightarrow\dfrac{5-x^2}{x}=5-2x\)
\(\Leftrightarrow5-x^2=5x-2x^2\)
\(\Leftrightarrow...\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\2x^2-\left(y+1\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\6x^2-3\left(y+1\right)^2=3\end{matrix}\right.\)
\(\Rightarrow5x^2-x\left(y+1\right)-4\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)\left(5x+4\left(y+1\right)\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=-\dfrac{5x+4}{4}\end{matrix}\right.\)
Thế vào 1 trong 2 pt ban đầu...