Giải PT và HPT:
1)\(\left\{{}\begin{matrix}xy+x+y=3\\\frac{1}{x^2+2x}+\frac{1}{y^2+2y}=\frac{2}{3}\end{matrix}\right.\)
2)\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=2x\)
3)\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\9xy\left(3x-y\right)+6=26x^3-2y^3\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
giải hệ phương trình:\(\left\{{}\begin{matrix}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
1, Giải các hệ phương trình sau
a, \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=26\\x+y=6\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}2x^2+x-y=0\\xy+3y-5x=7\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}\left(x-1\right)^2=1-y\\\left(x^2-y\right)^2=2xy\left(1+x\right)\end{matrix}\right.\)
d, \(\left\{{}\begin{matrix}x^2y+y^2x=2\\x^3+y^3+6=8x^2y^2\end{matrix}\right.\)
Giaỉ hệ phương trình
1) \(\left\{{}\begin{matrix}x^2-2xy+x+y=0\\x^4-x^2\left(4y-3\right)+y^2=0\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}3x^2+2xy+y^2=11\\x^2+2xy+3y^2=17\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x^3-2y^3-x-4y=0\\13x^2-41xy+21y^2+9=0\end{matrix}\right.\)
Giải hệ pt :
\(\left\{{}\begin{matrix}\left(y+1\right)\sqrt{2x-y}-x^2+x+xy=0\\x^2+y^2-2xy-3x+2=0\end{matrix}\right.\)
Giải hệ
a) \(\left\{{}\begin{matrix}xy+y^2=1+y\\x^2+2y^2+2xy=4+x\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-2y^2-xy+2y-x=0\\x^2-y^2+6xy+12=0\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2-3xy+2y^2+2x-2y=0\\x^2-2xy+y^2-10x+14Y=0\end{matrix}\right.\)
giải hệ phương trình
a)\(\left\{{}\begin{matrix}\left(x^2+1\right)\left(y^2+1\right)=10\\\left(x+y\right)\left(xy-1\right)=3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x^2+y^2+2\left(xy-2\right)=0\\x^2+y^2-2xy=16\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{x}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}2x^2+3xy+2x+y=0\\x^2+2xy+2y^2+3x=0\end{matrix}\right.\)