Giaỉ phương trình \(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
... giúp
Giaỉ hệ phương trình :
\(\hept{\frac{\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\left(1\right)}{\sqrt{y+\sqrt{y}+x+2}+\sqrt{3x+1}=5\left(2\right)}}\)
giaỉ các phương trình vô tỉ sau
\(x^2-3x+1+\frac{\sqrt{3}}{3}.\sqrt{x^4+x^2+1}=0\)
\(\sqrt[3]{4+4x-x^2}+x\sqrt{x\left(6-x^2\right)}+3x=12+\sqrt{2-x}\)
1 Giaỉ các phương trình sau ;
a)\(\sqrt[]{4x^2-4x+9=3}\) b) \(\sqrt[]{16x=8}\)
c) \(\sqrt{2x}=\sqrt{5}\) d) \(\sqrt[]{3x-1}=4\)
e)\(\sqrt[]{4\left(1-x\right)^2}-6=0\) g) \(\sqrt[]{x^2-x+16=4}\)
mn giúp e nha , e đang cần gấp ^^
c: Ta có: \(\sqrt{2x}=\sqrt{5}\)
\(\Leftrightarrow2x=5\)
hay \(x=\dfrac{5}{2}\)
d: Ta có: \(\sqrt{3x-1}=4\)
\(\Leftrightarrow3x-1=16\)
\(\Leftrightarrow3x=17\)
hay \(x=\dfrac{17}{3}\)
Ta có: \(\sqrt{4\cdot\left(1-x\right)^2}=6\)
\(\Leftrightarrow2\left|x-1\right|=6\)
\(\Leftrightarrow\left|x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Ta có: \(\sqrt{4x^2-4x+9}=3\)
\(\Leftrightarrow4x^2-4x=0\)
\(\Leftrightarrow4x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Giaỉ phương trình:
\(\left(\sqrt{2}+1\right)x-\sqrt{2}=2\)
\(\Leftrightarrow\left(\sqrt{2}+1\right)x=2+\sqrt{2}\\ \Leftrightarrow x=\dfrac{2+\sqrt{2}}{\sqrt{2}+1}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\)
\(\left(\sqrt{2}+1\right)x-\sqrt{2}=2\\ \Leftrightarrow\left(\sqrt{2}+1\right)x-\sqrt{2}-2=0\\ \Leftrightarrow\left(\sqrt{2}+1\right)x-\sqrt{2}\left(1+\sqrt{2}\right)=0\\ \Leftrightarrow\left(\sqrt{2}+1\right)\left(x-\sqrt{2}\right)=0\\ \Leftrightarrow x-\sqrt{2}=0\\ \Leftrightarrow x=\sqrt{2}\)
Giaỉ phương trình\(\sqrt{3x^2-6x-6}=3\sqrt{\left(2-x\right)^5}+\left(7x-19\right)\sqrt{2-x}\)
Gíup mình nha ,mình đag cần gấp
rồi bấy bề
giờ còn mỗi bài cực trị thôi
đợi mình up thêm nha
Giaỉ phương trình \(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)
\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)\(\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\Leftrightarrow2x+1=2x^3+x^2+2x+1\)\(\Leftrightarrow2x^3+x^2=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\left(1\right)\)
\(\left(1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(x^2+1\ge1\forall x\Rightarrow2x+1\ge0!2x+1!=2x+1\)
\(\left(1\right)\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(\left(1\right)\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)
\(\left(1\right)\Leftrightarrow2x+1=\left(2x+1\right)\left(x^2+1\right)\Leftrightarrow\left(2x+1\right).\left(1-\left(x^2+1\right)\right)=0\)
\(\hept{\begin{cases}2x+1=0\\-x^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}}\)
Chúc bạn học tốt !!!
Giaỉ hệ phương trình \(\left\{{}\begin{matrix}27^3-3x^2+9y=1\\\sqrt{x}+\sqrt{3y}=\sqrt[4]{72\left(\frac{x^2}{9}+y^2\right)}\end{matrix}\right.\)
Giaỉ phương trình sau ;
\(\sqrt[]{4\left(1-x\right)^2}-6=0\)
5phút nữa em pk nộp r mn giúp e nha =((((
Ta có: \(\sqrt{4\cdot\left(1-x\right)^2}=6\)
\(\Leftrightarrow2\left|x-1\right|=6\)
\(\Leftrightarrow\left|x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left|2\left(1-x\right)\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2\left(1-x\right)=6\\2\left(1-x\right)=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}1-x=3\\1-x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)
Giaỉ phương trình \(4\sqrt{2}\left(x^2+x+1\right)\sqrt{x^2+1}=3\left[\left(x^2+x+1\right)^2+x^2+1\right]\)