\(\Leftrightarrow\left(\sqrt{2}+1\right)x=2+\sqrt{2}\\ \Leftrightarrow x=\dfrac{2+\sqrt{2}}{\sqrt{2}+1}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=\sqrt{2}\)
\(\left(\sqrt{2}+1\right)x-\sqrt{2}=2\\ \Leftrightarrow\left(\sqrt{2}+1\right)x-\sqrt{2}-2=0\\ \Leftrightarrow\left(\sqrt{2}+1\right)x-\sqrt{2}\left(1+\sqrt{2}\right)=0\\ \Leftrightarrow\left(\sqrt{2}+1\right)\left(x-\sqrt{2}\right)=0\\ \Leftrightarrow x-\sqrt{2}=0\\ \Leftrightarrow x=\sqrt{2}\)