Giải phương trình \(\dfrac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
Giải phương trình:
1. \(5x^2+2x+10=7\sqrt{x^4+4}\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\sqrt{x^2+2x}=\sqrt{3x^2+4x+1}-\sqrt{3x^2+4x+1}\)
giải phương trình:
1,\(\sqrt{3x-8}\)-\(\sqrt{x+1}\)=\(\dfrac{2x-11}{5}\)
2,3x2-3x+18=10\(\sqrt{x^3+8}\)
3,\(\sqrt{5+2x}\)+\(\sqrt{5-2x}\)+5=3\(\sqrt{25-4x^2}\)
Giải bất phương trình :
a, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}\dfrac{< }{ }5\sqrt{x+1}\)
b, \(2x\sqrt{x}+\dfrac{5-4x}{\sqrt{x}}\dfrac{>}{ }\sqrt{x+\dfrac{10}{x}-2}\)
c, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8< 0\)
Giải phương trình:
\(3x-1+\dfrac{x-1}{4x}=\sqrt{3x+1}\)
Đk:\(x\ne0;x\ge-\dfrac{1}{3}\)
Pt \(\Leftrightarrow12x^2-3x-1=4x\sqrt{3x+1}\)
\(\Leftrightarrow16x^2=4x^2+4x\sqrt{3x+1}+3x+1\)
\(\Leftrightarrow16x^2=\left(2x+\sqrt{3x+1}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=2x+\sqrt{3x+1}\\4x=-\left(2x+\sqrt{3x+1}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\sqrt{3x+1}\left(1\right)\\6x=-\sqrt{3x+1}\left(2\right)\end{matrix}\right.\)
TH1 \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\4x^2=3x+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)\left(4x+1\right)=0\end{matrix}\right.\)\(\Rightarrow x=1\) (thỏa)
TH2\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\36x^2=3x+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\\left[{}\begin{matrix}x=\dfrac{1+\sqrt{17}}{24}\\x=\dfrac{1-\sqrt{17}}{24}\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow x=\dfrac{1-\sqrt{17}}{24}\)(tm)
Vậy...
Lời giải:
ĐKXĐ: $x\ge \frac{-1}{3}; x\neq 0$
PT \(\Leftrightarrow 3(x-1)+\frac{x-1}{4x}=\sqrt{3x+1}-2\)
\(\Leftrightarrow 3(x-1)+\frac{x-1}{4x}=\frac{3(x-1)}{\sqrt{3x+1}+2}\)
\(\Leftrightarrow (x-1)(3+\frac{1}{4x}-\frac{3}{\sqrt{3x+1}+2})=0\)
Nếu $x-1=0\Leftrightarrow x=1$ (tm)
Nếu $3+\frac{1}{4x}-\frac{3}{\sqrt{3x+1}+2}=0$
$\Leftrightarrow 12x\sqrt{3x+1}+12x+\sqrt{3x+1}+2=0$
$\Leftrightarrow \sqrt{3x+1}(12x+1)=-(12x+2)$
Từ đây suy ra $x\leq \frac{-1}{6}$
Bình phương 2 vế:
$(3x+1)(12x+1)^2=[(12x+1)+1]^2$
$\Leftrightarrow 3x(12x+1)^2=2(12x+1)+1$
$\Leftrightarrow 144x^3+24x^2-7x-1=0$
$\Leftrightarrow (4x+1)(36x^2-3x-1)=0$
Vì $x\leq \frac{-1}{6}$ nên $x=\frac{1-\sqrt{17}}{24}$
Cách 2:
ĐKXĐ:...........
PT $\Leftrightarrow 12x^2-3x-1=4x\sqrt{3x+1}$
$\Leftrightarrow \frac{3}{4}(4x)^2-(3x+1)=4x\sqrt{3x+1}$
Đặt $4x=a; \sqrt{3x+1}=b$ thì pt trở thành:
$\frac{3}{4}a^2-b^2=ab$
$\Leftrightarrow 3a^2-4b^2-4ab=0$
$\Leftrightarrow (a-2b)(3a+2b)=0$
Nếu $a-2b=0\Leftrightarrow 4x=2\sqrt{3x+1}$
$\Rightarrow 4x^2=3x+1$ và $x\geq 0$
$\Rightarrow x=1$ (chọn) hoặc $x=-\frac{1}{4}$ (loại do $x\geq 0$)
Nếu $3a+2b=0$
$\Leftrightarrow 12x=-2\sqrt{3x+1}$
Bình phương lên ta cũng thu được $x=\frac{1-\sqrt{17}}{24}$
Giải các phương trình, bất phương trình sau:
1) \(\sqrt{3x+7}-5< 0\)
2) \(\sqrt{-2x-1}-3>0\)
3) \(\dfrac{\sqrt{3x-2}}{6}-3=0\)
4) \(-5\sqrt{-x-2}-1< 0\)
5) \(-\dfrac{2}{3}\sqrt{-3-x}-3>0\)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{6}{3x-2}-2\sqrt{1-y}=1\\\dfrac{2}{3x-2}+\sqrt{1-y}=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{6}{3x-2}-2\sqrt{1-y}=1\\\dfrac{2}{3x-2}+\sqrt{1-y}=2\end{matrix}\right.\) (x \(\ne\) \(\dfrac{2}{3}\); y \(\le\) 1)
Đặt \(\dfrac{1}{3x-2}=a\); \(\sqrt{1-y}=b\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}6a-2b=1\\2a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}6a-2b=1\\4a+2b=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}10a=5\\4a+2b=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\4\cdot\dfrac{1}{2}+2b=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{1}{3x-2}=2\\\sqrt{1-y}=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2\left(3x-2\right)=1\\1-y=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{5}{6}\\y=0\end{matrix}\right.\) (TM)
Vậy ...
Chúc bn học tốt!
ĐK:x khác 2/3, y<_1
đặt 1/3x-2=u,căn (1-y) Ta có hệ
6u-2v=1
2u+v=2
sau đó giải hệ và trả ẩn b tự lm nha
giải phương trình:
\(\dfrac{x}{\sqrt{x+2}}+\sqrt{x+1}=\sqrt{3x+1}\)
Lời giải:
ĐKXĐ: $x\geq \frac{-1}{3}$
PT $\Leftrightarrow \frac{x}{\sqrt{x+2}}=\sqrt{3x+1}-\sqrt{x+1}$
$\Leftrightarrow \frac{x}{\sqrt{x+2}}=\frac{2x}{\sqrt{3x+1}+\sqrt{x+1}}$
$\Leftrightarrow x\left(\frac{1}{\sqrt{x+2}}-\frac{2}{\sqrt{3x+1}+\sqrt{x+1}}\right)=0$
Xét các TH:
TH1: $x=0$ (thỏa mãn)
TH2: $\frac{1}{\sqrt{x+2}}-\frac{2}{\sqrt{3x+1}+\sqrt{x+1}}$
$\Leftrightarrow \sqrt{3x+1}+\sqrt{x+1}=2\sqrt{x+2}$
$\Rightarrow 4x+2+2\sqrt{(3x+1)(x+1)}=4(x+2)$
$\Leftrightarrow \sqrt{(3x+1)(x+1)}=3$
$\Rightarrow (3x+1)(x+1)=9$
$\Leftrightarrow 3x^2+4x-8=0$
$\Rightarrow x=\frac{-2\pm 2\sqrt{7}}{3}$
Kết hợp với ĐKXĐ suy ra $x=\frac{-2+2\sqrt{7}}{3}$
Vậy............
Giải các phương trình sau:
1) \(\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{12x-8}{\sqrt{9x^2+16}}.\)
2) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}.\)
Giải phương trình
\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
Đặt \(\sqrt{3x+1}=a\)
\(\Rightarrow\frac{a^2-1}{\sqrt{a^2+9}}=a-1\)
\(\Leftrightarrow\left(a-1\right)\left(\frac{a+1}{\sqrt{a^2+9}}-1\right)=0\)