cho hai số dương a và b thỏa mãn a.b=1.Tính GTNN của biểu thức B=1/a+1/b+2/(a+b)
Cho hai số dương a và b thỏa mãn: \(a+b\le4\). Tìm GTNN của biểu thức: \(M=\dfrac{1}{a^2+b^2}+ab+\dfrac{25}{ab}\)
\(A=\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\left(ab+\dfrac{16}{ab}\right)+\dfrac{17}{2ab}\)
\(A\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{16ab}{ab}}+\dfrac{17}{\dfrac{2\left(a+b\right)^2}{4}}\)
\(A\ge\dfrac{4}{\left(a+b\right)^2}+8+\dfrac{34}{\left(a+b\right)^2}\ge\dfrac{4}{4^2}+8+\dfrac{34}{4^2}=\dfrac{83}{8}\)
Dấu "=" xảy ra khi \(a=b=2\)
Cho 2 số dương a và b thỏa mãn: \(a+b\le4\). Tìm GTNN của biểu thức: \(M=\dfrac{1}{a^2+b^2}+ab+\dfrac{25}{ab}\)
Cho hai số dương a,b thỏa mãn a+b=1 . Tìm Gtnn của biểu thức :
P= 1/1+3ab+a^2 + 1/1+3ab+ b^2
Áp dụng bđt AM-GM ta có
\(P\ge\frac{4}{2+a^2+b^2+6ab}=\frac{4}{\left(a+b\right)^2+4ab+1}=\frac{2}{1+2ab}\)
Lại có \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge\frac{2}{1+\frac{1}{2}}=\frac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
Cho các số nguyên dương a,b thỏa mãn a.b=2.(a-b). Tìm các số a,b thỏa mãn đẳng thức trên.
Cho các số thực dương a, b thỏa mãn điều kiện: \(a+b< =1\). Tìm GTNN của biểu thức: \(P=\dfrac{b^2}{a^2b^2+b^2+1}+\dfrac{b}{2a}\)
Cho hai số thực dương a,b thỏa mãn \(a^2+b^2=1\)
Tìm GTNN và GTLN của biểu thức \(A=\frac{3a^2+3b^2+14ab}{1+2ab+2b^2}\)
cho hai số a,b dương thỏa mãn a + b = 2. tìm GTNN biểu thức
B = √a^3+√b^3
Lời giải:
Áp dụng BĐT AM-GM:
$\sqrt{a^3}+\sqrt{a}\geq 2\sqrt{\sqrt{a^3}.\sqrt{a}}=2a$
$\sqrt{b^3}+\sqrt{b}\geq 2\sqrt{\sqrt{b^3}.\sqrt{b}}=2b$
Cộng hai BĐT trên ta có:
$\sqrt{a^3}+\sqrt{b^3}+\sqrt{a}+\sqrt{b}\geq 2(a+b)$
$\Rightarrow B+\sqrt{a}+\sqrt{b}\geq 4(1)$
Áp dụng tiếp BĐT AM-GM:
$(\sqrt{a}+\sqrt{b})^2\leq (a+b)(1+1)=2.2=4\Rightarrow \sqrt{a}+\sqrt{b}\leq 2(2)$
Từ $(1); (2)\Rightarrow B\geq 4-2=2$
Vậy $B_{\min}=2$.
cho hai số a,b dương thỏa mãn a + b = 2. tìm GTNN biểu thức
B = √a^3+√b^3
Lời giải:
Áp dụng BĐT AM-GM:
$\sqrt{a^3}+\sqrt{a}\geq 2\sqrt{\sqrt{a^3}.\sqrt{a}}=2a$
$\sqrt{b^3}+\sqrt{b}\geq 2\sqrt{\sqrt{b^3}.\sqrt{b}}=2b$
Cộng hai BĐT trên ta có:
$\sqrt{a^3}+\sqrt{b^3}+\sqrt{a}+\sqrt{b}\geq 2(a+b)$
$\Rightarrow B+\sqrt{a}+\sqrt{b}\geq 4(1)$
Áp dụng tiếp BĐT AM-GM:
$(\sqrt{a}+\sqrt{b})^2\leq (a+b)(1+1)=2.2=4\Rightarrow \sqrt{a}+\sqrt{b}\leq 2(2)$
Từ $(1); (2)\Rightarrow B\geq 4-2=2$
Vậy $B_{\min}=2$.
cho hai số dương a và thỏa mãn a*b=1. Tìm giá trị nhỏ nhất của biểu thức B=1/a + 1/b +2/a+b
Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)và \(x+y\ge2.\sqrt{xy}\)( dấu ''='' xảy ra ở 2 bđt này khi x=y )
Ta có \(B=\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\ge\frac{4}{a+b}+\frac{2}{a+b}=\frac{6}{a+b}\)
\(=\frac{6}{a+b}+\frac{3\left(a+b\right)}{2}-\frac{3.\left(a+b\right)}{2}\ge2\sqrt{\frac{6}{a+b}.\frac{3\left(a+b\right)}{2}}-\frac{3.2.\sqrt{ab}}{2}\)
\(=2\sqrt{9}-3.\sqrt{ab}=6-3=3\)
Dấu ''='' xảy ra khi \(\hept{\begin{cases}\frac{6}{a+b}=\frac{3.\left(a+b\right)}{2}\\a=b\\a.b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{6}{2a}=\frac{3.2a}{2}\\a=b\\a.b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}12a^2=12\\a=b\\a.b=1\end{cases}}\)\(\Leftrightarrow a=b=1\)
Cho a,b là các số thực dương thỏa mãn a+b=1
Tìm GTNN của biểu thức A=\(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{a}\right)\)
\(A=ab+\dfrac{1}{ab}+2=ab+\dfrac{1}{16ab}+\dfrac{15}{16}ab+2\)
\(A\ge2\sqrt{\dfrac{ab}{16ab}}+\dfrac{15}{4\left(a+b\right)^2}+2=\dfrac{25}{4}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
`A=(a+1/b)(b+1/a)`
`=ab+1+1+1/(ab)`
`=2+ab+1/(16ab)+15/(16ab)`
Áp dụng cosi
`=>ab+1/(16ab)>=1/2`
`ab<=(a+b)^2/4=1/4`
`=>16ab<=4`
`=>15/(16ab)>=15/4`
`=>A>=15/4+1/2+2=25/4`
Dấu "=" xảy ra khi `a=b=1/2`