Lời giải:
Áp dụng BĐT AM-GM:
$\sqrt{a^3}+\sqrt{a}\geq 2\sqrt{\sqrt{a^3}.\sqrt{a}}=2a$
$\sqrt{b^3}+\sqrt{b}\geq 2\sqrt{\sqrt{b^3}.\sqrt{b}}=2b$
Cộng hai BĐT trên ta có:
$\sqrt{a^3}+\sqrt{b^3}+\sqrt{a}+\sqrt{b}\geq 2(a+b)$
$\Rightarrow B+\sqrt{a}+\sqrt{b}\geq 4(1)$
Áp dụng tiếp BĐT AM-GM:
$(\sqrt{a}+\sqrt{b})^2\leq (a+b)(1+1)=2.2=4\Rightarrow \sqrt{a}+\sqrt{b}\leq 2(2)$
Từ $(1); (2)\Rightarrow B\geq 4-2=2$
Vậy $B_{\min}=2$.