Tìm GTLN hoặc GTNN của
A= \(2\sqrt{\left(2+x\right)\left(4-x\right)}-4\sqrt{2-x}-4\sqrt{4-x}\)
Mọi người giúp mình với đung cô xi với bunhia nhưng mà chả ra
a, Giả sử (x;y) là các số thực thỏa mãn : \(\left(x+\sqrt{3+x^2}\right)\left(y+\sqrt{3+y^2}\right)=9\) .Tìm GTNN của \(P=x^2+xy+y^2\)
b, Tìm GTNN, GTLN của biểu thức: \(P=\sqrt[4]{1+x}+\sqrt[4]{1-x}+\sqrt[4]{1-x^2}\)
Mình đang rất cần nên các bạn giúp mình với nha!
Theo đề bài, ta có:
x3+y3=x2−xy+y2x3+y3=x2−xy+y2
hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0
⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1
+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52
+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4
Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
\(P=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+2}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-\sqrt{x}}\right)\)
a.Rút gọn
b. Tìm x để P <0 (cứu mình câu này với T_T)
c. Tìm GTNN của P (câu này tớ cũng hông biết T_T)
Tớ đang cần gấp, mọi người giúp với nhé!
Mọi người giúp em với em cần rất gấp ạ
Tìm GTNN của M=\(\dfrac{2\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\) với x≥0,x≠1,x≠4
Biểu thức này ko tồn tại cả min lẫn max
\(\dfrac{1}{M}=\dfrac{\sqrt{x}-1}{2\sqrt{x}+4}=\dfrac{-\dfrac{1}{4}\left(2\sqrt{x}+4\right)+\dfrac{\sqrt{x}}{2}}{2\sqrt{x}+4}=-\dfrac{1}{4}+\dfrac{\sqrt{x}}{4\left(\sqrt{x}+2\right)}\)
Do \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}+2>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\sqrt{x}}{4\left(\sqrt{x}+2\right)}\ge0\)
\(\Rightarrow\dfrac{1}{M}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(x=0\)
Tìm Max, Min của
a.\(f\left(x\right)=\sqrt{x+1}+\sqrt{9-x}\)
b.\(f\left(x\right)=\sqrt{x}+\sqrt{2-x}+\sqrt{2x-x^2}\)
c.\(f\left(x\right)=x+\sqrt{8-x^2}+x\sqrt{8-x^2}\)
d.\(f\left(x\right)=\sqrt{x+2}+\sqrt{2-x}+\sqrt{4-x^2}\)
a) Đặt $\sqrt{x+1}=a; \sqrt{9-x}=b$ thì bài toán trở thành:
Tìm max, min của $f(a,b)=a+b$ với $a,b\geq 0$ và $a^2+b^2=10$Ta có:
$f^2(a,b)=(a+b)^2=a^2+b^2+2ab=10+2ab\geq 10$ do $ab\geq 0$
$\Rightarrow f(a,b)\geq \sqrt{10}$ hay $f_{\min}=\sqrt{10}$
Mặt khác: $f^2(a,b)=(a+b)^2\leq 2(a^2+b^2)=20$ (theo BĐT AM-GM)
$\Rightarrow f(a,b)\leq \sqrt{20}=2\sqrt{5}$ hay $f_{\max}=2\sqrt{5}$
b)
Đặt $\sqrt{x}=a; \sqrt{2-x}=b$ thì bài toán trở thành:
Tìm max, min của $f(a,b)=a+b+ab$ với $a,b\geq 0$ và $a^2+b^2=2$. Ta có:
$f(a,b)=\sqrt{(a+b)^2}+ab=\sqrt{a^2+b^2+2ab}+ab=\sqrt{2+2ab}+ab\geq \sqrt{2}$ do $ab\geq 0$
Vậy $f_{\min}=\sqrt{2}$
Lại có, theo BĐT AM-GM:
$f(a,b)=\sqrt{2+2ab}+ab\leq \sqrt{2+a^2+b^2}+\frac{a^2+b^2}{2}=\sqrt{2+2}+\frac{2}{2}=3$
Vậy $f_{\max}=3$
c) Đặt $\sqrt{8-x^2}=a$ thì bài toán trở thành tìm max, min của:
$f(x,a)=x+a+ax$ với $x,a\geq 0$ và $x^2+a^2=8$. Bài này chuyển về y hệt như phần b.
$f_{\min}=2\sqrt{2}$
$f_{\max}=8$
d) Tương tự:
$f_{\min}=2$ khi $x=\pm 2$
$f_{\max}=2+2\sqrt{2}$ khi $x=0$
Cho biểu thức:
P = \(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\left(x>0,x\ne4,x\ne9\right)\)
a) Rút gọn P
b) Với \(x>9\), tìm GTNN của P
a) \(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{x-4}\right):\left[\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]\)
\(P=\left[\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\left[\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\dfrac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{-4x-8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(P=\dfrac{-4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{-\left(\sqrt{x}-3\right)}\)
\(P=\dfrac{-4\sqrt{x}\cdot\sqrt{x}}{-\left(\sqrt{x}-3\right)}\)
\(P=\dfrac{4x}{\sqrt{x}-3}\)
b) \(P=\dfrac{4x}{\sqrt{x}-3}\)
\(P=4\left(\sqrt{x}-3\right)+\dfrac{36}{\sqrt{x}-3}+24\)
Theo BĐT côsi ta có:
\(P\ge\sqrt{\dfrac{4\left(\sqrt{x}-3\right)\cdot36}{\sqrt{x}-3}}+24=36\)
Vậy: \(P_{min}=36\Leftrightarrow x=36\)
Giải phương trình:
a) \(5x^2-10x=4\left(x-1\right)\sqrt{x^2-2x+2}\)
b) \(\sqrt{2x^2+22x+29}-x-2=2\sqrt{2x+3}\)
c) \(x^3-7x^2+9x+12=\left(x-3\right)\left(x-2+5\sqrt{x-3}\right)\left(\sqrt{x-3}-1\right)\)
Mọi người giúp gấp với ạ.
Tìm GTNN của
\(A=\sqrt{4x^2+4x+1}+\sqrt{9x^2-12x+4}\)
\(B=\sqrt{a+3-4\sqrt{a-1}}+\sqrt{a+15-8\sqrt{a-1}}\)
\(C=2x+\sqrt{4-2x^2}\)
Tìm GTLN của
\(D=2x+\sqrt{4-x^2}\)
\(E=\frac{\sqrt{x-1}}{x}\)
\(F=\left(a+x\right)\sqrt{a^2-x^2}\left(0\le x\le a\right)\)
MÌNH CẦN GẤP LẮM GIÚP MÌNH VỚI
Tìm GTNN hoặc GTLN:
a/ \(A=\sqrt{9x-x}+\sqrt{29}\)
b/ \(B=\left(x^4+4\right)^4\)
c/ \(C=\sqrt{421}-\sqrt{124-x}\)
d/ \(D=1-\sqrt{5}\left(\sqrt{x}-\sqrt{3}\right)^2\)
MinA = 29 \(\Leftrightarrow x=0\)
Min B= 625 \(\Leftrightarrow x=\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Giải phương trình:
1, \(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
2, \(\sqrt{2x+4}-2\sqrt{2-x}=\frac{6x-4}{\sqrt{x^2+4}}\)
3, \(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\)
- Sử dụng phương pháp liên hợp
Mọi người giúp mình với ạ mình đang cần gấp!
À sau khi nhân liên hợp chia ra 2 trường hợp, VD như bài 3 sau khi nhân liên hợp sẽ được: \(\left(x-1\right)\left(\frac{x+1}{\sqrt{x^2+15}+4}-3-\frac{x+1}{\sqrt{x^2+8}+3}\right)=0\)
Nếu được mọi người giải thích giùm em tại sao biểu thức trong dấu ngoặc thứ 2 luôn luôn khác 0 ạ (Tương tự với các bài khác nếu được)
Em thử nha,sai thì thôi ạ.
2/ ĐK: \(-2\le x\le2\)
PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)
Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk
PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)
\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)
Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..
1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
ĐK \(x\ge-1\)
Nhân liên hợp ta có
\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)
<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)
<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)
=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
2. Tiếp đoạn của tth
\(\sqrt{x^2+4}=\sqrt{2x+4}+\sqrt{8-4x}\)
<=> \(x^2+4=2x+4+8-4x+2\sqrt{8\left(x+2\right)\left(x-2\right)}\)
<=> \(x^2+2x-8=4\sqrt{2\left(x+2\right)\left(2-x\right)}\)
<=>\(\left(x-2\right)\left(x+4\right)=4\sqrt{2\left(x+2\right)\left(2-x\right)}\)
<=> \(\orbr{\begin{cases}x=2\\\left(x+4\right)\sqrt{2-x}=-4\sqrt{2\left(x+2\right)}\left(2\right)\end{cases}}\)
Pt (2) vô nghiệm do \(x+4>0\)với \(x\ge-2\)
=> \(x=2\)
Vậy x=2