Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hai ne
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 20:13

Bài 1:

a: \(M=x^2-10x+3\)

\(=x^2-10x+25-22\)

\(=\left(x^2-10x+25\right)-22\)

\(=\left(x-5\right)^2-22>=-22\forall x\)

Dấu '=' xảy ra khi x-5=0

=>x=5

b: \(N=x^2-x+2\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

c: \(P=3x^2-12x\)

\(=3\left(x^2-4x\right)\)

\(=3\left(x^2-4x+4-4\right)\)

\(=3\left(x-2\right)^2-12>=-12\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

THẮNG SANG CHẢNH
Xem chi tiết
Tớ Chưa Bồ
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:38

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:39

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Nguyễn Huy Tú
12 tháng 3 2022 lúc 13:25

Bài 2 : 

a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = 2 

b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)

Dấu ''='' xảy ra khi x = -1 

Nguyễn Huy Tú
12 tháng 3 2022 lúc 13:26

 Bài 1 : 

a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)

c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

Mắm đẹp zai
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 1 2021 lúc 20:01

\(A=\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)

\(A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

\(y=4x^2+\dfrac{9}{x^2}-3\ge2\sqrt{\dfrac{36x^2}{x^2}}-3=9\)

\(y_{min}=9\) khi \(x^2=\dfrac{3}{2}\)

\(P=\dfrac{x-1}{4}+\dfrac{1}{x-1}+\dfrac{1}{4}\ge2\sqrt{\dfrac{x-1}{4\left(x-1\right)}}+\dfrac{1}{4}=\dfrac{5}{4}\)

\(P_{min}=\dfrac{5}{4}\) khi \(x=\dfrac{3}{2}\)

lilla
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 22:56

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

 

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 22:57

c) Ta có: \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\forall x\)

Dấu '=' xảy ra khi x(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

d) Ta có: \(x^2+5y^2-2xy+4y+3\)

\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)

Hoàng An Nhiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 20:43

Ta có: \(A=\left(x-3\right)^2+\left(11-x\right)^2\)

\(=x^2-6x+9+x^2-22x+121\)

\(=2x^2-28x+130\)

\(=2\left(x^2-14x+49+16\right)\)

\(=2\left(x-7\right)^2+32\ge32\forall x\)

Dấu '=' xảy ra khi x=7

Mạnh=_=
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2022 lúc 17:50

\(A=\left(4x^2+4x+1\right)+10=\left(2x+1\right)^2+10\ge10\)

\(A_{min}=10\) khi \(2x+1=0\Rightarrow x=-\dfrac{1}{2}\)

\(B=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

\(B_{min}=-36\) khi \(x^2+5x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(C=\left(x^2-2x+1\right)+\left(y^2-4x+4\right)+2=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)

\(C_{min}=2\) khi \(\left(x;y\right)=\left(1;2\right)\)

Nguyễn Ngọc Huy Toàn
1 tháng 3 2022 lúc 17:56

a. \(A=4x^2+4x+11\)

   \(A=\left(4x^2+4x+1\right)+10\)

  \(A=\left(2x+1\right)^2+10\)

Ta có: \(\left(2x+1\right)^2\ge0;\forall x\) 

\(\Rightarrow A_{min}=10\)

Dấu "=" xảy ra khi \(\left(2x+1\right)^2=0\)

                            \(\Leftrightarrow2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)

c.\(C=x^2-2x+y^2-4y+7\)

  \(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)

  \(C=\left(x-1\right)^2+\left(y-2\right)^2+2\)

Ta có: \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0;\forall x,y\)

\(\Rightarrow C_{min}=2\)

Dấu "=" xảy ra khi\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)