Cho A=3/22+8/32+15/42+....+20232-1/20232 Không là số tự nhiên (lm nhanh giúp mik vs ạ )
a) cho A=1/22+1/12+1/62+...+1/1002
CTR: A<1/2
b) cho P=1/22+1/32+1/42+...+1/20232
CTR: P không là số tự nhiên
c) cho C=1/32+1/52+1/72+...+1/2021+1/202322
CTR: C không là số tự nhiên
GIÚP MÌNH VỚI Ạ. MÌNH CẦN GẤP. CẢM ƠN MỌI NGƯỜI!
https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881
Cô làm rồi em nhá
a) cho A=1/22+1/12+1/62+...+1/1002
CTR: A<1/2
b) cho P=1/22+1/32+1/42+...+1/20232
CTR: P không là số tự nhiên
c) cho C=1/32+1/52+1/72+...+1/2021+1/202322
CTR: C không là số tự nhiên
GIÚP MÌNH VỚI Ạ. MÌNH CẦN GẤP. CẢM ƠN MỌI NGƯỜI!
CÔ NGUYỄN THỊ THƯƠNG HOÀI GIÚP EM VỚI Ạ
Câu a, xem lại đề bài
Câu b:
P = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)
Vì \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
........................
\(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
Cộng vế với vế ta có:
0< P < 1 - \(\dfrac{1}{2023}\) < 1
Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp
Câu c:
C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C
B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0
Cộng vế với vế ta có:
C+B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)+ \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0
Mặt khác ta có:
1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)
Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)
1.
(1+2+3+...+2023).(12+22+...+20232).(65.111-13.15.37)
\(A=\left(1+2+3+...+2023\right)\left(1^2+2^2+...+2023^2\right)\left(65\cdot111-13\cdot15\cdot37\right)\)
\(=\left(1+2+3+...+2023\right)\cdot\left(1^2+2^2+...+2023^2\right)\cdot\left(13\cdot5\cdot3\cdot37-13\cdot5\cdot3\cdot37\right)\)
=0
Tính nhanh: 20232 - 20222
\(2023^2-2022^2=\left(2023-2022\right)\left(2023+2022\right)\)
\(=1\cdot4045=4045\)
$2023^2-2022^2$
$=(2023-2022)(2023+2022)$
$=4045$
20232-2022.2023
Tính nhanh: 23+(27-7.6)-(94.7-27.99)
2003² - 2002.2003
= 2003.(2003 - 2002)
= 2003 . 1
= 2003
-------------------
7(x - 2) + 2³ = 2.5²
7(x - 2) + 8 = 2.25
7(x - 2) = 50 - 8
7(x - 2) = 42
x - 2 = 42 : 7
x - 2 = 6
x = 6 + 2
x = 8
-------------------
23 + (27 - 7.6) - (94.7 - 27.99)
= 23 + 27 - 42 - 658 + 2673
= 23 + (27 + 2673) - (42 + 658)
= 23 + 2700 - 700
= 23 + 2000
= 2023
`2023^2-2022.2023`
`=2023.2023-2022.2023`
`=2023.(2023-2022)`
`=2023.1`
`=2023`
__
` 23 + (27 - 7.6) - (94.7 - 27.99)`
` = 23 + (27 - 42) - (658 - 2673)`
` = 23 + (-15) - (-2015)`
` = 8 + 2015`
` = 2023`
\(2023^2-2022.2023\)
\(=2023\left(2023-2022\right)\)
\(=2023.1\)
\(=2023\)
\(23+\left(27-7.6\right)-\left(94.7-27.99\right)\)
\(=23+27-7.6-94.7+27.99\)
\(=23+\left(27+27.99\right)-\left(7.6+94.7\right)\)
\(=23+27\left(1+99\right)-7.\left(6+94\right)\)
\(=23+27.100-7.100\)
\(=23+2000\)
\(=2023\)
Bài 1;
a) A=20232 VÀ B= 2022.2024
b) A= 20242 VÀ B= 2023.2025
C) A= 2023 . 2027 VÀ B= 20252
D) 10750 VÀ 7375
E) 2 1993 VÀ 7714
Cần giúp trước thứ 5 ngày 13/10/2023 ạ❗
`#3107.101107`
a)
`A = 2023^2` và `B = 2022*2024`
Ta có:
`A = 2023^2 = 2023*2023 = 2023*(2022 + 1) = 2023*2022 + 2023`
`B = 2022*2024 = 2022*(1 + 2023) = 2022*2023 + 2022`
Vì `2023 > 2022`
`=> 2023^2 > 2022*2024`
`=> A > B`
b)
`A=2024^2` và `B = 2023*2025`
`A = 2024^2 = 2024*2024 = 2024*(2023 + 1) = 2024*2023 + 2024`
`B = 2023*2025 = 2023*(2024 + 1) = 2023*2024 + 2023`
Vì `2024 > 2023 => 2024^2 > 2023*2025 => A > B`
Vậy, `A > B`
c)
`A = 2023*2027` và `B = 2025^2`
Ta có:
`A = 2023*(2025 + 2) = 2023*2025 + 4046`
`B = 2025^2 = 2025*2025 = 2025*(2023 + 2) = 2025*2023 + 4050`
Vì `4046 < 4050 => 2023*2027 < 2025^2 => A < B`
Vậy, `A < B`
d)
`107^50` và `73^75`
Ta có:
`107^50 = 107^(2*50) = (107^2)^25 = 11449^25`
`73^75 = 73^(3*25) = (73^3)^25 = 389017^25`
Vì `11449 < 389017 => 11449^25 < 389017^25 => 107^50 < 73^75`
Vậy, `107^50 < 73^75`
e)
`2^1993` và `7^714`
Ta có:
`2^1993 = 2^1988 * 2^5 = (2^14)^142 * 2^5 = 16384^142 * 32`
`7^714 = 7^710 * 7^4 = (7^5)^142 * 7^4 = 16807^142 * 2401`
Vì `16384 < 16807; 32 < 2401`
`=> 2^1993 < 7^714.`
Chứng minh:
A=1/22+1/32+1/42+...+1/102<1
Giảii giúp mik vs ạ mik đag cần gấp
A=1/2^2+1/3^2+...+1/10^2
=>A<1-1/2+1/2-1/3+...+1/9-1/10=1-1/10<1
2. không tính kết quả, hay so sánh:
a) A= 2022.2024 và B= 20232
\(Bài.2:\\ A=2022.2024=\left(2023-1\right).\left(2023+1\right)=2023^2-1^2\\ Vì:2023^2-1^2< 2023^2\Rightarrow2022.2024< 2023^2\\ Vậy:A< B\)
1) tính S = 1 + 3 + 5 + ... + 2023
2) tính S = -1 + 3 + 7 + 11 + ... + 1995
1: Số số hạng là (2023-1):2+1=1012(số)
Tổng là S=(2023+1)*1012/2=1012^2=1024144
\(1)\) \(S=1+3+5+\cdot\cdot\cdot+2023\)
Số các số hạng của \(S\) là: \(\left(2023-1\right):2+1=1012\left(số\right)\)
Tổng \(S\) bằng: \(\left(2023+1\right)\cdot1012:2=1024144\)
\(2)\) \(S=-1+3+7+11+\cdot\cdot\cdot+1995\)
Số các số hạng của \(S\) là: \(\left[1995-\left(-1\right)\right]:4+1=500\left(số\right)\)
Tổng \(S\) bằng: \(\left[1995+\left(-1\right)\right]\cdot500:2=498500\)
#Toru
1) Số số hạng:
(2023 - 1) : 2 + 1 = 1012 (số)
⇒ S = (2023 + 1) . 1012 : 2 = 1024144
2) Đặt A = 3 + 7 + 11 + ... + 1995
Số số hạng của A:
(1995 - 3) : 4 + 1 = 499 (số)
A = (1995 + 3) . 499 : 2 = 498501
⇒ S = -1 + A = -1 + 498501 = 498500