Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
huy phamtien
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2023 lúc 10:39

=>x^2+12=8x hoặc x^2+12=-8x

=>x^2-8x+12=0 hoặc x^2+8x+12=0

=>(x-2)(x-6)=0 hoặc (x+2)(x+6)=0

=>x=2;x=6;x=-2;x=-6

Vương
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 5 2020 lúc 15:10

Đặt \(\sqrt{2x^2-8x+12}=t>0\)

\(\Rightarrow x^2-4x=\frac{t^2-12}{2}\)

BPT trở thành:

\(\frac{t^2-12}{2}-6-t\ge0\)

\(\Leftrightarrow t^2-2t-24\ge0\Rightarrow\left[{}\begin{matrix}t\ge6\\t\le-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2-8x+12}\ge6\)

\(\Leftrightarrow2x^2-8x+12\ge36\)

\(\Leftrightarrow x^2-4x-12\ge0\Rightarrow\left[{}\begin{matrix}x\ge6\\x\le-2\end{matrix}\right.\)

Phạm Ngọc An
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2020 lúc 20:33

\(\Leftrightarrow x^4-4x^3+4x^2-4x^3+16x^2-16x+3x^2-12x+12\le0\)

\(\Leftrightarrow x^2\left(x^2-4x+4\right)-4x\left(x^2-4x+4\right)+3\left(x^2-4x+4\right)\le0\)

\(\Leftrightarrow\left(x^2-4x+3\right)\left(x-2\right)^2\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^2-4x+3\le0\end{matrix}\right.\) \(\Rightarrow1\le x\le3\)

Gsbkbds
Xem chi tiết
Gsbkbds
30 tháng 4 2019 lúc 18:08

Giúp vs ạ mk đag cần

$Mr.VôDanh$
30 tháng 4 2019 lúc 18:26

.

$Mr.VôDanh$
30 tháng 4 2019 lúc 18:30

4x2 hay là 4x2 vậy bạn ?

phuong a Nguyen
Xem chi tiết
Thư Nguyễn
18 tháng 9 2016 lúc 14:37

ko bít

phuong a Nguyen
18 tháng 9 2016 lúc 14:39

bạn học lớp nhiu

Lê Hồng Nhung
Xem chi tiết
Vũ Quốc Huy
26 tháng 4 2019 lúc 18:59

1) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)

ta có: (-6).\(\sqrt{6x^2-18x+12}\) > \(6x^2-18x-60\)

\(6x^2-18x+12\) + \(2.3.\sqrt{6x^2-18x+12}+9-81\) > 0

\(\left(\sqrt{6x^2-18x+12}+3\right)^2-9^2\) > 0

\(\left(\sqrt{6x^2-18x+12}+12\right).\left(\sqrt{6x^2-18x+12}-6\right)\) > 0

\(\sqrt{6x^2-18x+12}-6\) > 0

\(\sqrt{6x^2-18x+12}>6\)

\(6x^2-18x+12>36\)

\(6x^2-18x-24>0\)

\(\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\)

đối chiếu ĐKXĐ ban đầu ta được: x ϵ (-∞;-1) \(\cup\)(4;+∞)

b) ĐKXĐ: \(\forall x\) ϵ R

\(\left(x-2\right)\sqrt{x^2+4}-\left(x-2\right)\left(x+2\right)\le0\)

\(\left(x-2\right)\left(\sqrt{x^2+4}-x-2\right)\le0\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\\sqrt{x^2+4}-x-2\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\\sqrt{x^2+4}-x-2\ge0\end{matrix}\right.\end{matrix}\right.\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x^2+4\le x^2+4x+4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x^2+4\ge x^2+4x+4\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\le0\end{matrix}\right.\end{matrix}\right.\)\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)

Đối chiếu ĐKXĐ ta được x ϵ ( -∞;0) \(\cup\)( 2; +∞)

Phương Nguyễn
Xem chi tiết
Nguyễn Ngọc Lộc
29 tháng 6 2021 lúc 10:50

- Đặt \(f\left(x\right)=\dfrac{2x-3}{19+8x}\)

- Lập bảng xét dấu :

- Từ bảng xét dấu : - Để : \(f\left(x\right)< 0\)

\(\Leftrightarrow-\dfrac{19}{8}< x< \dfrac{3}{2}\)

Vậy ...

Nguyễn Lê Phước Thịnh
29 tháng 6 2021 lúc 11:34

Ta có: \(\dfrac{2x-3}{8x+19}< 0\)

Trường hợp 1: \(\left\{{}\begin{matrix}2x-3>0\\8x+19< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{19}{8}\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Trường hợp 2: \(\left\{{}\begin{matrix}2x-3< 0\\8x+19>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x>-\dfrac{19}{8}\end{matrix}\right.\Leftrightarrow-\dfrac{19}{8}< x< \dfrac{3}{2}\)

Vậy: S={x|\(-\dfrac{19}{8}< x< \dfrac{3}{2}\)}

Mei Mei
Xem chi tiết
Nguyễn Thành Sơn
Xem chi tiết
YangSu
29 tháng 6 2023 lúc 20:54

\(a,\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-1>0\\x^2+12>0\left(LD\forall x\right)\\-x+4>0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x>1\\-x>-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{4}\\x< 4\end{matrix}\right.\)

Vậy \(S=\left\{x|\dfrac{1}{4}< x< 4\right\}\)

\(b,\left(2x-1\right)\left(5-2x\right)\left(1-x\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1< 0\\5-2x< 0\\1-x< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{1}{2}\\x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\)

Vậy \(S=\left\{x|1>x>\dfrac{5}{2}\right\}\)