giải BPT
\(|x^2+12|=|-8x|\)
giải BPT
\(|x^2+12|=|-8x|\)
=>x^2+12=8x hoặc x^2+12=-8x
=>x^2-8x+12=0 hoặc x^2+8x+12=0
=>(x-2)(x-6)=0 hoặc (x+2)(x+6)=0
=>x=2;x=6;x=-2;x=-6
Giải bpt sau : \(x^2 - 4x - 6 - \sqrt{2x^2 - 8x + 12} \geq 0\)
Đặt \(\sqrt{2x^2-8x+12}=t>0\)
\(\Rightarrow x^2-4x=\frac{t^2-12}{2}\)
BPT trở thành:
\(\frac{t^2-12}{2}-6-t\ge0\)
\(\Leftrightarrow t^2-2t-24\ge0\Rightarrow\left[{}\begin{matrix}t\ge6\\t\le-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2-8x+12}\ge6\)
\(\Leftrightarrow2x^2-8x+12\ge36\)
\(\Leftrightarrow x^2-4x-12\ge0\Rightarrow\left[{}\begin{matrix}x\ge6\\x\le-2\end{matrix}\right.\)
giải bpt x4-8x3+23x2-28x+12<_0
\(\Leftrightarrow x^4-4x^3+4x^2-4x^3+16x^2-16x+3x^2-12x+12\le0\)
\(\Leftrightarrow x^2\left(x^2-4x+4\right)-4x\left(x^2-4x+4\right)+3\left(x^2-4x+4\right)\le0\)
\(\Leftrightarrow\left(x^2-4x+3\right)\left(x-2\right)^2\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^2-4x+3\le0\end{matrix}\right.\) \(\Rightarrow1\le x\le3\)
Giải pt sau
a.(2x+3)(x-5)=4x2+6x
b.x/2x-6 - x/2x+2 = 2x/(x+1)(x-3)
c.giải bpt sau : 12x+1/12 ≤ 9x+1/3 - 8x+1/4
\(\sqrt{3x+4}-\sqrt{5-x}+3x^{^2}-8x-19>0\) giải bpt
1 giải bpt \(\sqrt{6x^2-18x+12}< 3x+10-x^2\)
2 giải bpt \(\left(x-2\right)\sqrt{x^2+4}\le x^2-4\)
1) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
ta có: (-6).\(\sqrt{6x^2-18x+12}\) > \(6x^2-18x-60\)
⇔ \(6x^2-18x+12\) + \(2.3.\sqrt{6x^2-18x+12}+9-81\) > 0
⇔ \(\left(\sqrt{6x^2-18x+12}+3\right)^2-9^2\) > 0
⇔ \(\left(\sqrt{6x^2-18x+12}+12\right).\left(\sqrt{6x^2-18x+12}-6\right)\) > 0
⇔ \(\sqrt{6x^2-18x+12}-6\) > 0
⇔ \(\sqrt{6x^2-18x+12}>6\)
⇔\(6x^2-18x+12>36\)
⇔ \(6x^2-18x-24>0\)
⇔\(\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\)
đối chiếu ĐKXĐ ban đầu ta được: x ϵ (-∞;-1) \(\cup\)(4;+∞)
b) ĐKXĐ: \(\forall x\) ϵ R
\(\left(x-2\right)\sqrt{x^2+4}-\left(x-2\right)\left(x+2\right)\le0\)
⇔\(\left(x-2\right)\left(\sqrt{x^2+4}-x-2\right)\le0\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\\sqrt{x^2+4}-x-2\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\\sqrt{x^2+4}-x-2\ge0\end{matrix}\right.\end{matrix}\right.\)⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x^2+4\le x^2+4x+4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x^2+4\ge x^2+4x+4\end{matrix}\right.\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\le0\end{matrix}\right.\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)
Đối chiếu ĐKXĐ ta được x ϵ ( -∞;0) \(\cup\)( 2; +∞)
giải bpt:
\(\dfrac{2x-3}{19+8x}\)<0
- Đặt \(f\left(x\right)=\dfrac{2x-3}{19+8x}\)
- Lập bảng xét dấu :
- Từ bảng xét dấu : - Để : \(f\left(x\right)< 0\)
\(\Leftrightarrow-\dfrac{19}{8}< x< \dfrac{3}{2}\)
Vậy ...
Ta có: \(\dfrac{2x-3}{8x+19}< 0\)
Trường hợp 1: \(\left\{{}\begin{matrix}2x-3>0\\8x+19< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{19}{8}\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Trường hợp 2: \(\left\{{}\begin{matrix}2x-3< 0\\8x+19>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x>-\dfrac{19}{8}\end{matrix}\right.\Leftrightarrow-\dfrac{19}{8}< x< \dfrac{3}{2}\)
Vậy: S={x|\(-\dfrac{19}{8}< x< \dfrac{3}{2}\)}
giải các pt và bpt:
a. (x-1)3 = x2 - 2x + 1
b. \(\frac{2x-3}{2}>\frac{8x-11}{6}\)
giải BPT sau
a,(4x-1)(x^2+12)(-x+4)>0
b,(2x-1)(5-2x)(1-x)<0
\(a,\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1>0\\x^2+12>0\left(LD\forall x\right)\\-x+4>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x>1\\-x>-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{4}\\x< 4\end{matrix}\right.\)
Vậy \(S=\left\{x|\dfrac{1}{4}< x< 4\right\}\)
\(b,\left(2x-1\right)\left(5-2x\right)\left(1-x\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1< 0\\5-2x< 0\\1-x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{1}{2}\\x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\)
Vậy \(S=\left\{x|1>x>\dfrac{5}{2}\right\}\)