Đặt \(\sqrt{2x^2-8x+12}=t>0\)
\(\Rightarrow x^2-4x=\frac{t^2-12}{2}\)
BPT trở thành:
\(\frac{t^2-12}{2}-6-t\ge0\)
\(\Leftrightarrow t^2-2t-24\ge0\Rightarrow\left[{}\begin{matrix}t\ge6\\t\le-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2-8x+12}\ge6\)
\(\Leftrightarrow2x^2-8x+12\ge36\)
\(\Leftrightarrow x^2-4x-12\ge0\Rightarrow\left[{}\begin{matrix}x\ge6\\x\le-2\end{matrix}\right.\)