tính
4.11.\(\dfrac{3}{4}\).\(\dfrac{9}{121}\)
\(\dfrac{3}{4}.\dfrac{7}{9}.\dfrac{1}{9}.\dfrac{7}{4}\)
\(\dfrac{6}{7}.\dfrac{8}{13}-\dfrac{6}{9}.\dfrac{9}{7}+\dfrac{5}{13}.\dfrac{6}{7}\)
2.11.\(\dfrac{3}{4}.\dfrac{9}{121}\)
\(\dfrac{3}{4}\cdot\dfrac{7}{9}\cdot\dfrac{1}{9}\cdot\dfrac{7}{4}\)
\(=\dfrac{3\cdot7\cdot1\cdot7}{4\cdot9\cdot9\cdot4}=\dfrac{3\cdot7\cdot1\cdot7}{4\cdot3\cdot3\cdot9\cdot4}\)
\(=\dfrac{7\cdot1\cdot7}{4\cdot3\cdot9\cdot4}=\dfrac{49}{432}\)
\(\dfrac{6}{7}\cdot\dfrac{8}{13}-\dfrac{6}{9}\cdot\dfrac{9}{7}+\dfrac{5}{13}\cdot\dfrac{6}{7}\)
\(=\dfrac{6}{7}\cdot\dfrac{8}{13}-\dfrac{6}{7}+\dfrac{5}{13}\cdot\dfrac{6}{7}\)
\(=\dfrac{6}{7}\left(\dfrac{8}{13}-1+\dfrac{5}{13}\right)\)
\(=\dfrac{6}{7}\cdot0\)
\(=0\)
\(2\cdot11\cdot\dfrac{3}{4}\cdot\dfrac{9}{121}\)
\(=\dfrac{2\cdot11\cdot3\cdot9}{4\cdot121}=\dfrac{2\cdot11\cdot3\cdot9}{2\cdot2\cdot11\cdot11}\)
\(=\dfrac{3\cdot9}{2\cdot11}=\dfrac{27}{22}\)
a. \(\dfrac{3.7.1.7}{4.3.3.9.4}=\dfrac{49}{432}\)
b. \(\dfrac{6}{7}.\left(\dfrac{8}{13}+\dfrac{5}{13}-1\right)=\dfrac{6}{7}.0=0\)
\(\dfrac{2.11.3.9}{2.2.11.11}=\dfrac{27}{22}\)
Cho biểu thức E=\(\dfrac{\dfrac{4}{11}+\dfrac{4}{121}-\dfrac{4}{12321}}{\dfrac{9}{11}+\dfrac{9}{121}-\dfrac{9}{12321}}\)
Chứng tỏ rằng E là một số hữu tỉ
\(=\dfrac{4\left(\dfrac{1}{11}+\dfrac{1}{121}-\dfrac{1}{12321}\right)}{9\left(\dfrac{1}{11}+\dfrac{1}{121}-\dfrac{1}{12321}\right)}=\dfrac{4}{9}\)
\(\dfrac{3}{15}.\dfrac{5}{9}:\dfrac{-18}{17}.\dfrac{14}{17}\)
\(\dfrac{12}{7}.\dfrac{7}{4}+\dfrac{35}{11}:\dfrac{245}{121}\)
giúp mình với
a: \(=\dfrac{1}{3}\cdot\dfrac{1}{3}\cdot\dfrac{-17}{18}\cdot\dfrac{14}{17}=\dfrac{-14}{18\cdot9}=\dfrac{-14}{162}=\dfrac{-7}{81}\)
b: \(=\dfrac{12}{4}+\dfrac{35}{11}\cdot\dfrac{121}{245}=3+\dfrac{11}{7}=\dfrac{32}{7}\)
\(\dfrac{3}{15}.\dfrac{5}{9}:\dfrac{-18}{17}.\dfrac{14}{17}\)
\(\dfrac{12}{7}.\dfrac{7}{4}+\dfrac{35}{11}:\dfrac{245}{121}\)
giúp mình với
a: \(=\dfrac{15}{135}\cdot\dfrac{-17}{18}\cdot\dfrac{14}{17}=\dfrac{1}{9}\cdot\dfrac{-7}{9}=\dfrac{-7}{81}\)
b: \(=3+\dfrac{35}{11}\cdot\dfrac{121}{245}=3+\dfrac{11}{7}=\dfrac{32}{7}\)
Bài 15:
a)\(\dfrac{-2}{5}\)+\(\dfrac{4}{5}\) . x =\(\dfrac{3}{5}\)
b)\(\dfrac{-3}{7}\) - \(\dfrac{4}{7}\):x = -2
Bài 16
a) x - \(\dfrac{10}{3}\) = \(\dfrac{7}{15}\) . \(\dfrac{3}{5}\)
b) x + \(\dfrac{3}{22}\)= \(\dfrac{27}{121}\) . \(\dfrac{11}{9}\)
c) \(\dfrac{8}{23}\) . \(\dfrac{48}{24}\) - x = \(\dfrac{1}{3}\)
d) 1 - x = \(\dfrac{49}{65}\).\(\dfrac{5}{7}\)
Bài 17: tìm x
a) \(\dfrac{62}{7}\) . x = \(\dfrac{29}{9}\): \(\dfrac{3}{56}\)
b) \(\dfrac{1}{5}\) : x=\(\dfrac{1}{5}\)+\(\dfrac{1}{7}\)
bài 18:
a)\(\dfrac{2}{5}\)+\(\dfrac{3}{4}\): x =\(\dfrac{-1}{2}\)
b)\(\dfrac{5}{7}\) - \(\dfrac{2}{3}\) . x = \(\dfrac{4}{5}\)
c) \(\dfrac{1}{2}\)x + \(\dfrac{3}{5}\)x = \(\dfrac{-2}{3}\)
d) \(\dfrac{4}{7}\).x-x = \(\dfrac{-9}{14}\)
bài 19: tính
\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+ \(\dfrac{1}{2018.2019}\)
bài 20:tìm x
\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{x.\left(x+1\right)}\)=\(\dfrac{2008}{2009}\)
bài 21: tìm x
\(\dfrac{x+1}{99}\)+\(\dfrac{x+2}{98}\)\(\dfrac{x+3}{97}\)\(\dfrac{x+4}{96}\)=-4
bài 22 : so sánh các phân số sau:
a) \(\dfrac{-1}{5}\)+\(\dfrac{4}{-5}\)và 1
b) \(\dfrac{3}{5}\) và \(\dfrac{2}{3}\)+\(\dfrac{-1}{5}\)
c)\(\dfrac{3}{2}\)+\(\dfrac{-4}{3}\) và \(\dfrac{1}{10}\)+\(\dfrac{-4}{5}\)
d) \(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{5}\)+\(\dfrac{1}{6}\) và 2
Bài 1: Thực hiện phép tính:
a, \(\left(\dfrac{7}{20}+\dfrac{11}{15}-\dfrac{15}{12}\right):\left(\dfrac{11}{20}-\dfrac{26}{45}\right)\)
b, \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}:\dfrac{15-\dfrac{15}{11}+\dfrac{15}{121}}{16-\dfrac{16}{11}+\dfrac{16}{121}}\)
c, \(\dfrac{\dfrac{1}{9}-\dfrac{5}{6}-4}{\dfrac{7}{12}-\dfrac{1}{36}-10}\)
\(a,\left(\dfrac{7}{20}+\dfrac{11}{15}-\dfrac{15}{12}\right):\left(\dfrac{11}{20}-\dfrac{26}{45}\right).\)
\(=\left(\dfrac{21}{60}+\dfrac{44}{60}-\dfrac{75}{60}\right):\left(\dfrac{99}{180}-\dfrac{104}{180}\right).\)
\(=\left(\dfrac{65}{60}-\dfrac{75}{60}\right):\left(-\dfrac{5}{180}\right).\)
\(=-\dfrac{10}{60}:\left(-\dfrac{5}{180}\right).\)
\(=-\dfrac{1}{6}:\left(-\dfrac{1}{36}\right).\)
\(=-\dfrac{1}{6}.\left(-36\right).\)
\(=\dfrac{-1.\left(-36\right)}{6}=\dfrac{36}{6}=6.\)
Vậy......
\(b,\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}:\dfrac{15-\dfrac{15}{11}+\dfrac{15}{121}}{16-\dfrac{16}{11}+\dfrac{16}{121}}.\)
\(=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}:\dfrac{15\left(1-\dfrac{1}{11}+\dfrac{1}{121}\right)}{16\left(1-\dfrac{1}{11}+\dfrac{1}{121}\right)}.\)
\(=\dfrac{5}{8}:\dfrac{15}{16}.\)
\(=\dfrac{5}{8}.\dfrac{16}{15}=\dfrac{5.16}{8.15}=\dfrac{1.2}{1.3}=\dfrac{2}{3}.\)
Vậy......
c, (làm tương tự câu b).
~ Học tốt!!! ~
Bài 2: Tính nhanh:
a) \(\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot.....\cdot\dfrac{120}{121}\cdot\dfrac{143}{144}\)
b)\(\dfrac{5}{9}\cdot\dfrac{21}{25}\cdot\dfrac{45}{49}\cdot\dfrac{77}{81}\cdot.....\dfrac{357}{361}\cdot\dfrac{437}{441}\)
ai làm đúng mk dùng 3nick mk tick cho :))))
a) \(A=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{120}{121}.\dfrac{143}{144}\)
= \(\dfrac{1.3.2.4.3.5.4.6....10.12.11.13}{2^2.3^2.4^2.5^2...11^2.12^2}\)
= \(\dfrac{1.2.12.13}{2^2.12^2}=\dfrac{13}{2.12}=\dfrac{13}{24}\)
b) \(B=\dfrac{5}{9}.\dfrac{21}{25}.\dfrac{45}{49}.\dfrac{77}{81}....\dfrac{357}{361}.\dfrac{437}{441}\)
= \(\dfrac{1.5.3.7.5.9.7.11.....17.21.19.23}{3^2.5^2.7^2....19^2.21^2}=\dfrac{1.3.21.23}{3^2.21^2}\)
= \(\dfrac{23}{3.21}=\dfrac{23}{63}\)
Bài 1:
a,\(|x-3|+|2-x|=0\)
b,\(\left(2-\dfrac{3}{4}x\right).\left(x+1\right)=0\)
bài 2:
a,A=\(\dfrac{\dfrac{-6}{7}+\dfrac{6}{13}-\dfrac{6}{29}}{\dfrac{9}{7}-\dfrac{9}{13}+\dfrac{9}{29}}\)
b,B=\(\dfrac{\dfrac{2}{15}-\dfrac{2}{21}+\dfrac{2}{39}}{0,25-\dfrac{5}{28}+\dfrac{5}{52}}\)
c,C=\(\dfrac{50-\dfrac{4}{15}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}:\dfrac{1+\dfrac{2}{21}-\dfrac{5}{121}}{\dfrac{65}{121}-\dfrac{26}{71}-13}\)
1.a) Dễ nhận thấy đề toán chỉ giải được khi đề là tìm x,y. Còn nếu là tìm x ta nhận thấy ngay vô nghiệm. Do đó: Sửa đề: \(\left|x-3\right|+\left|2-y\right|=0\)
\(\Leftrightarrow\left|x-3\right|=\left|2-y\right|=0\)
\(\left|x-3\right|=0\Rightarrow\left\{{}\begin{matrix}x-3=0\\-\left(x-3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) (1)
\(\left|2-y\right|=0\Rightarrow\left\{{}\begin{matrix}2-y=0\\-\left(2-y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\) (2)
Từ (1) và (2) có: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=3\\x_2=-3\end{matrix}\right.\\\left\{{}\begin{matrix}y_1=2\\y_2=-2\end{matrix}\right.\end{matrix}\right.\)
Bài 2:
a: \(=\dfrac{-6\left(\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{29}\right)}{9\left(\dfrac{1}{7}-\dfrac{1}{13}+\dfrac{1}{29}\right)}=\dfrac{-6}{9}=\dfrac{-2}{3}\)
b: \(=\dfrac{\dfrac{2}{15}-\dfrac{2}{21}+\dfrac{2}{39}}{\dfrac{10}{40}-\dfrac{10}{56}+\dfrac{10}{104}}\)
\(=\dfrac{\dfrac{2}{3}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{13}\right)}{\dfrac{10}{8}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{2}{3}:\dfrac{5}{4}=\dfrac{2}{3}\cdot\dfrac{4}{5}=\dfrac{8}{15}\)
c: \(=\dfrac{2\left(25-\dfrac{2}{13}+\dfrac{1}{15}-\dfrac{1}{17}\right)}{4\left(25-\dfrac{2}{13}+\dfrac{1}{15}-\dfrac{1}{17}\right)}:\dfrac{1+\dfrac{2}{21}-\dfrac{5}{121}}{13\left(\dfrac{5}{121}-\dfrac{2}{21}-1\right)}\)
=2/4:(-1)/13=2/4x(-13)=-13/2
Tính tổng:
\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{121\sqrt{120}+120\sqrt{121}}\)
Tổng quát:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)\(=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(\Rightarrow S=\dfrac{10}{11}\)
Ta có công thức tổng quát như sau:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left[\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\right]\left[\left(n+1\right)\sqrt{n}-n\sqrt{n+1}\right]}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)
\(=\dfrac{\sqrt{n}}{n}-\dfrac{\sqrt{n+1}}{n+1}\)
\(=\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n+1}}\)
Áp dụng vào tổng S ta có:
\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{121\sqrt{120}+120\sqrt{121}}\)
\(S=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{120}}+\dfrac{1}{\sqrt{121}}\)
\(S=1-\dfrac{1}{\sqrt{121}}=1-\dfrac{1}{11}=\dfrac{10}{11}\)