Chứng tỏ rằng a2+b2\(\ge\frac{\left(a+b\right)^2}{2}\)
a)Chứng tỏ rằng: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) với mọi giá trị dương của a,b,x,y
b) Chứng tỏ rằng: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\) với a,b,c dương
a/
Biến đổi tương đương:
\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\Leftrightarrow\left(x+y\right)\left(a^2y+b^2x\right)\ge xy\left(a+b\right)^2\)
\(\Leftrightarrow a^2xy+b^2x^2+a^2y^2+b^2xy\ge a^2xy+b^2xy+2abxy\)
\(\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)
Vậy BĐT ban đầu đúng (đpcm), dấu "=" xảy ra khi \(ay=bx\)
b/
Mở rộng cho 3 số, ta có \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Vậy \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với x, y, z dương
Mặt khác ta luôn có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) \(\forall a,b,c\)
\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\ge0\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\)
Áp dụng:
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{\left(a^2\right)^2}{ab}+\frac{\left(b^2\right)^2}{bc}+\frac{\left(c^2\right)^2}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+ac+bc}\ge\frac{\left(ab+ac+bc\right)^2}{ab+ac+bc}=ab+ac+bc\)
Dấu "=" xảy ra khi \(a=b=c\)
Chứng minh rằng nếu: a + b = 1 thì a2 + b2 \(\ge\dfrac{\text{1}}{\text{2}}\).
Với mọi số thực ta luôn có:
`(a-b)^2>=0`
`<=>a^2-2ab+b^2>=0`
`<=>a^2+b^2>=2ab`
`<=>2(a^2+b^2)>=(a+b)^2=1`
`<=>a^2+b^2>=1/2(đpcm)`
Dấu "=' `<=>a=b=1/2`
ta có:
(a²+b²)(1²+1²)≥(a.1+b.1)²
⇔ 2(a²+b²) ≥ (a+b)²
⇔ 2(a²+b²)≥ 1 (vì a+b=1)
⇔ a² +b² ≥ 1/2 (đpcm)
dấu "=) xảy ra khi a = b = 1/2
Chứng minh rằng với mọi số thực a,b thì\(\frac{\left|a\right|}{2+\left|a\right|}+\frac{\left|b\right|}{2+\left|b\right|}\ge\frac{\left|a+b\right|}{2+\left|a+b\right|}\)
Cho a,b,c là các số thực không âm thỏa mãn a2+b2+c2+abc=4 .Chứng minh rằng :
\(abc+2\ge ab+bc+ca\ge abc\)
Giả sử \(c\le1\).
Khi đó: \(ab+bc+ca-abc=ab\left(1-c\right)+c\left(a+b\right)\ge0\)
\(\Rightarrow ab+bc+ca\ge abc\left(1\right)\)
Đẳng thức xảy ra chẳng hạn với \(a=2,b=c=0\).
Theo giả thiết:
\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)
\(\Leftrightarrow ab\left(c+2\right)\le4-c^2\)
\(\Leftrightarrow ab\le2-c\)
Trong ba số \(\left(a-1\right),\left(b-1\right),\left(c-1\right)\) luôn có hai số cùng dấu.
Không mất tính tổng quát, giả sử \(\left(a-1\right)\left(b-1\right)\ge0\).
\(\Rightarrow ab-a-b+1\ge0\)
\(\Leftrightarrow ab\ge a+b-1\)
\(\Leftrightarrow abc\ge ca+bc-c\)
\(\Rightarrow abc+2\ge ca+bc+2-c\ge ab+bc+ca\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) Bất đẳng thức được chứng minh.
Bài 1
Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)
Chững minh c=0
Bài 2
Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
Chững minh a + b+ c+ d = 0
Bài 3
Cho \(\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bz-cy}{a}\)
Chững mình rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Bài 4
Cho a + b = c + d và \(a^2+b^2+c^2=c^2+d^2\left(a,b,c,d\ne0\right)\)
Chững minh rằng 4 số a,b, c, d lập thành 1 tỉ lệ thức
Bài 5
Cho \(\left(x1P-y1Q\right)^{2n}+\left(x2P+y2Q\right)^{2m}+...+\left(xkP-ykQ\right)^{2k}\le0\left(n,m,...,k\inℕ^∗;P,Q\ne0\right)\)
Chứng minh rằng \(\frac{x1+x2+x3+...+xk}{y1+y2+y3+...+yk}\)
Bài 6
Biết rằng \(\hept{\begin{cases}a1^2+a2^2+a3^2=P^2\\b1^2+b2^2+b3^2=Q^2\end{cases}}\) và \(a1\cdot b1+a2\cdot b2+a3\cdot b3=P\cdot Q\)
Chứng minh \(\frac{a1}{b1}=\frac{a2}{b2}=\frac{a3}{b3}=\frac{P}{Q}\)
Bài 7
Cho 4 số a, b, c, d khác 0 thảo mãn \(\left(ad+bc\right)^2=4abcd\)
Chững minh rằng 4 số a, b, c ,d có thê rlaapj thành 1 tỉ lệ thức
Bài 8
Cho các số a, b, c thảo mãn \(\frac{a}{2010}=\frac{b}{2011}=\frac{c}{2012}\)
a. Tính \(M=\frac{2a-3b+c}{2c-3b}\)
b. Chứng minh rằng \(a\cdot\left(a-b\right)\cdot\left(b-c\right)=\left(a-c\right)^2\)
Chứng tỏ rằng với a và b là các số bất kì thì: a 2 + b 2 / 2 ≥ a b
Ta có: a - b 2 ≥ 0 ⇒ a 2 + b 2 - 2 a b ≥ 0
⇒ a 2 + b 2 - 2 a b + 2 a b ≥ 2 a b ⇒ a 2 + b 2 ≥ 2 a b
⇒ a 2 + b 2 . 1 / 2 ≥ 2 a b . 1 / 2 ⇒ a 2 + b 2 / 2 ≥ a b
1.Chứng minh rằng :
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+b+c+d\)với \(a\ge-1;b\ge-4;c\ge2;d>3\)
2. Chứng minh rằng :
\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)với \(a,b,c,d>0\)
Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)
Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3
\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)
\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)
\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
ta sẽ giết ngươi kí tên dép đờ kiu lờ
Với mọi số thực a,b,c chứng tỏ:
\(\frac{a^2}{4}+b^2+c^2\ge b\left(a-c\right)+c\left(a-b\right)\)
Biến đổi tương đương :
\(\frac{a^2}{4}+b^2+c^2\ge b\left(a-c\right)+c\left(a-b\right)\)
\(\Leftrightarrow\frac{a^2}{4}+b^2+c^2\ge ab-bc+ca-bc\)
\(\Leftrightarrow\frac{a^2}{4}+b^2+c^2\ge ab+ca-2bc\)
\(\Leftrightarrow\frac{a^2}{4}-ab-ac+\left(b^2+2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(\frac{a}{2}\right)^2-2.\frac{a}{2}.\left(b+c\right)+\left(b+c\right)^2\ge0\)
\(\Leftrightarrow\left(\frac{a}{2}-b-c\right)^2\ge0\)(luôn đúng \(\forall a;b;c\))
Vậy \(\frac{a^2}{4}+b^2+c^2\ge b\left(a-c\right)+c\left(a-b\right)\)
Chứng minh rằng:
\(\frac{a^2+b^2}{\left(a-b\right)^2}+\frac{b^2+c^2}{\left(b-c\right)^2}+\frac{c^2+a^2}{\left(c-a\right)^2}\ge\frac{5}{2}\)