\(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a^2+2ab+b^2\right)\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a^2+2ab+b^2\right)\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
Chứng minh rằng nếu: a + b = 1 thì a2 + b2 \(\ge\dfrac{\text{1}}{\text{2}}\).
Chứng tỏ rằng với a và b là các số bất kì thì: a 2 + b 2 / 2 ≥ a b
Với mọi số thực a,b,c chứng tỏ:
\(\frac{a^2}{4}+b^2+c^2\ge b\left(a-c\right)+c\left(a-b\right)\)
Chứng minh rằng
a, \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\))
b, \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
c, \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)
với các số dương a,b,c chứng minh rằng
\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b^3}{\left(c+2a\right)^2}+\frac{c^3}{\left(a+2b\right)^2}\ge\frac{2}{9}\left(a+b+c\right)\)
Cho a, b, c không âm. Chứng minh rằng:
\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)
Dùng dồn biến được không ạ?
cho a,b,c thuộc R+ và abc=1. chứng minh rằng
\(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2}\)
Cho a>0, b>0 và a+b=1
Chứng minh rằng: \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge\frac{25}{2}\)
Cho các số dương a, b, c thỏa mãn \(a+b+c=1\). Chứng minh rằng :\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\ge\frac{100}{3}\)