Cho a,b,c là các số thực dương. Chứng minh rằng
\(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\ge\frac{9}{4\left(a+b+c\right)}\)
Cho a,b,c là các số phân biệt . Chứng minh
\(\left(a^2+b^2+c^2\right)\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{9}{2}\)
Cho a,b,c > 0 , \(a^2+b^2+c^2=3\). Chứng minh rằng : \(\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\frac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\frac{9}{\left(a+c\right)^2}+b^2}\)≥\(\frac{3\sqrt{13}}{2}\)
Cho các số thực dương a,b,c thỏa mãn c\(\ge\)a.Chứng minh rằng:
\(\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+4\left(\frac{c}{c+a}\right)^2\ge\frac{3}{2}\)
Cho a,b,c dương và abc=1
CMR: \(\frac{a^4}{2\left(b+c\right)^2}+\frac{b^4}{2\left(a+c\right)^2}+\frac{c^4}{2\left(a+b\right)^2}+\frac{1}{c^2\left(a+c\right)\left(a+b\right)}+\frac{1}{b^2\left(a+b\right)\left(b+c\right)}+\frac{1}{a^2\left(a+c\right)\left(a+b\right)}\ge\frac{1}{8}\)
Chứng minh rằng: \(\left(a+\frac{1}{b}\right).\left(b+\frac{1}{c}\right).\left(c+\frac{1}{a}\right)\ge\left(\frac{10}{3}\right)^2\)với a,b,c >0 và a+b+c=1.
Cho a,b,c >0 thỏa mãn \(b^2+c^2\)≤\(a^2\)
Chứng minh rằng : \(\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)≥5
Cho ba số thực dương a, b, c. Chứng minh rằng
\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=3. Chứng minh \(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{3}{4}\)