\(BĐT\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)
Áp dụng BĐT Bunhi kết hợp với Nesbit :
\(VT=\left(\sqrt{a}^2+\sqrt{b}^2+\sqrt{c}^2\right)\left[\left(\frac{\sqrt{a}}{b+c}\right)^2+\left(\frac{\sqrt{b}}{c+a}\right)^2+\left(\frac{\sqrt{c}}{a+b}\right)^2\right]\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\ge\left(\frac{3}{2}\right)^2=\frac{9}{4}\)
Vậy BĐT đc chứng minh . Dấu bằng xảy ra khi \(a=b=c\)