\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(x+y+z\right)\ge\frac{\left(a+b+c\right)^2}{\left(x+y+z\right)}.\left(x+y+z\right)=\left(a+b+c\right)^2\)
Dấu "=" xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
\(\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\left(x+y+z\right)\ge\frac{\left(a+b+c\right)^2}{\left(x+y+z\right)}.\left(x+y+z\right)=\left(a+b+c\right)^2\)
Dấu "=" xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
1.Cho ba số dương a+b+c=1.Chứng minh rằng:
\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)
2.Cho x,y,z là các số thực dương và thỏa mãn xy+yz+zx=xyz.Chứng minh rằng:
\(\frac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\frac{yz}{x^3+\left(1+y\right)\left(1+z\right)}+\frac{zx}{y^2+\left(1+z\right)\left(1+x\right)}\)\(\ge\)\(\frac{1}{16}\)
3.Cho hai số thực dương a,b và thỏa mãn 2a +3b \(\le4\).Tìm giá trị nhỏ nhất của biểu thức:
Q=\(\frac{2002}{a}+\frac{2017}{b}+2996a-5501b\)
4.Gỉai phương trình : \(\left(x^2-4\right)^3=\left(\sqrt[3]{\left(x^2+4\right)^2}+4\right)^2\)
Cho x,y,z là các số thực thỏa mãn (x-y)(x-z)=1 ; y khác z .
Chứng minh \(\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\)≥4
a) cho x,y,z là các số thực dương. . Chứng minh rằng: \(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)
b) cho a,b,c là số đo ba cạnh của tam giác. Chứng minh rằng:
\(\frac{\sqrt{a}}{b+c-a}+\frac{\sqrt{b}}{c+a-b}+\frac{\sqrt{c}}{a+b-c}\ge\frac{a+b+c}{\sqrt{abc}}\)
Bài 1: Cho a,b,c dương
a) Tìm Max \(P=\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\)
b) Tìm Max \(Q=\frac{a^2}{5a^2+\left(b+c\right)^2}+\frac{b^2}{5b^2+\left(c+a\right)^2}+\frac{c^2}{5c^2+\left(a+b\right)^2}\)
Bài 2: Cho x,y,z là các số thực không âm thỏa mãn \(x+y+z=\frac{3}{2}\).Chứng minh rằng \(x+2xy+4xyz\le2\)
Bài 3: Cho a,b thỏa mãn \(\left(x+y\right)^3+4xy\ge2\). Tìm Min \(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1\)
Bài 4: Cho x,y,z >0: \(x\left(x+y+z\right)=3yz\). Chứng minh: \(\left(x+y\right)^3+\left(x+z\right)^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\le5\left(y+z\right)^3\)
Bài 5:Cho a,b,c không âm thỏa mãn \(a^2+b^2+c^2+abc=4\). CMR: \(a+b+c\le3\)
Cho các số dương x;y;z thoả mãn:xyz=\(\frac{1}{2}\)Chứng minh rằng:
\(\frac{yz}{x^2\left(y+x\right)}+\frac{xz}{y^2\left(x+z\right)}+\frac{xy}{z^2\left(x+y\right)}\ge xy+yz+xz\)
Cho x, y, z là các số thực dương thỏa mãn (x-y)(x-z)=1 y khác z
CM: \(\frac{1}{\left(x+y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\ge4\)
cho các số thực dương x,y,x thỏa mãn xy ≥ 1 và z ≥1
Chứng minh bất đẳng thức \(\frac{x}{y+1}+\frac{y}{x+1}+\frac{z^3+2}{3\left(xy+1\right)}\ge\frac{3}{2}\)
1.Cho x,y,z là các số thực dương. CMR:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\left(\frac{1}{x+2y}+\frac{1}{y+2z}+\frac{1}{z+2x}\right)\)
2. Cho a,b là các số thực có giá trị tuyệt đối không vượt quá 1:
CMR: \(\sqrt{1-a^2}+\sqrt{1-b^2}\le2\sqrt{1-\left(\frac{a+b}{2}\right)^2}\)
Chứng minh:
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)