Cho x, y, z là các số thực dương thỏa mãn (x-y)(x-z)=1 y khác z
CM: \(\frac{1}{\left(x+y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\ge4\)
Các số dương x,y,z thỏa mãn điều kiện x+y+z=1.Tìm GTNN của biểu thức
F=\(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(x+z\right)}\)
Cho 3 số dương x, y, z thỏa mãn điều kiện xy + yz + zx = 1. Tính tổng:
\(S=\sqrt[x]{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+\sqrt[y]{\frac{\left(1+x^2\right)\left(1+z^2\right)}{\left(1+y^2\right)}}+\sqrt[z]{\frac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)
Cho 3 số thực dương x, y, z thỏa mãn \(x+y+z\le\frac{3}{2}\). Tìm GTNN của biểu thức:
\(P=\frac{x\left(yz+1\right)^2}{z^2_{ }\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
Giải phương trình \(\left(\frac{x-1}{x+2}\right)^2+\left(\frac{2x+4}{x-3}\right)^2+\frac{3\left(x-1\right)}{x-3}=0\)
Cho x ,y,z là các số đội một khác nhau thỏa mãn \(x^3\left(y-z\right)+z^3\left(x-y\right)=y^3\left(z-x\right)\) Chứng minh \(x^3+y^3+z^3=0\)
Cho x,y,z thỏa mãn xy+yz+xz=1
Tính tổng: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1-z^2}}\)
Cho x,y,z thỏa mãn xy+yz+xz=1
Tính tổng: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Cho x,y,z>0 thỏa mãn x+y+z=18√2
CM: \(\frac{1}{\sqrt{x\left(y+z\right)}}+\frac{1}{\sqrt{y\left(z+x\right)}}+\frac{1}{\sqrt{z\left(x+y\right)}}\ge\frac{1}{4}\)
Cho 3 số dương x;y;z thỏa mãn điều kiện xy+yz+zx=1
Tính:
\(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+y^2\right)\left(1+x^2\right)}{1+z^2}}\)