Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thanh Hiền

Cho ba số thực dương a, b, c. Chứng minh rằng

\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Akai Haruma
31 tháng 8 2019 lúc 23:28

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)(ab+bc+ac)\geq (a+b+c)^2\)

\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\geq \left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)^2\)

Nhân theo vế 2 BĐT trên:

\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2(ab+bc+ac).\frac{a+b+c}{abc}\geq [(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})]^2\)

\(\Leftrightarrow \left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\geq [(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})]^2\)

\(\Leftrightarrow \left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\geq (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$


Các câu hỏi tương tự
bt ko
Xem chi tiết
Phan Tiến Nhật
Xem chi tiết
fghj
Xem chi tiết
Châu Hà
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Đại Ngọc
Xem chi tiết
Nano Thịnh
Xem chi tiết