Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngọc linh
Xem chi tiết
Khánh An Ngô
Xem chi tiết
HT.Phong (9A5)
24 tháng 9 2023 lúc 10:10

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

Nguyễn Huỳnh Minh Thư
Xem chi tiết
Ly Ly
Xem chi tiết
Nguyễn Ngọc Lộc
4 tháng 7 2021 lúc 16:03

a, \(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy ...

b, ĐKXĐ : \(x\ge-1\)

\(\Leftrightarrow2\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{x+1}=-\dfrac{5}{3}\)

Vậy phương trình vô nghiệm

Lê Thị Thục Hiền
4 tháng 7 2021 lúc 16:04

a)Pt \(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy...

b)Đk:\(x\ge-1\)

Pt\(\Leftrightarrow2\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow-3\sqrt{x+1}=5\) (vô nghiệm)

Vậy...

trương khoa
4 tháng 7 2021 lúc 16:04

a\(\sqrt{\left(2x-1\right)^2}=4\)

\(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy S={\(\dfrac{5}{2};-\dfrac{3}{2}\)}

Nguyễn Thị Thu Phương
Xem chi tiết
Nguyễn Thị Thu Phương
30 tháng 7 2021 lúc 18:47

Câu 2,3,4 nx thôi ạ. Câu 1 có bạn giúp r ạ 

Edogawa Conan
30 tháng 7 2021 lúc 18:57

1)\(\sqrt{4x^2+12x+9}=2-x\)

\(\Leftrightarrow\sqrt{\left(2x+3\right)^2}=2-x\)

\(\Leftrightarrow\left|2x+3\right|=2-x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2-x\\2x+3=x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)

\(\)

Edogawa Conan
30 tháng 7 2021 lúc 19:08

2)\(\sqrt{x^4+2x^2+1}=x^2+5x+4\)       ĐK:\(x\ge-1\)

\(\Leftrightarrow\sqrt{\left(x^2+1\right)^2}=x^2+5x+4\)

\(\Leftrightarrow\left|x^2+1\right|=x^2+5x+4\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=x^2+5x+4\\x^2+1=-x^2-5x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-3\\2x^2+5x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\2\left(x+\dfrac{5}{4}\right)^2+\dfrac{15}{8}=0\left(voli\right)\end{matrix}\right.\)

   

Nguyễn Huỳnh Minh Thư
Xem chi tiết
Thắng Nguyễn
1 tháng 10 2016 lúc 17:03

a)\(x^2-\sqrt{x+5}=5\)

Đk:\(x\ge-5\)

\(\Leftrightarrow\left(x^2-5\right)^2=\sqrt{\left(x+5\right)^2}\)

\(\Leftrightarrow x^4-10x^2+25=x+5\)

\(\Leftrightarrow x^4-10x^2+25-x-5=0\)

\(\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-x-5=0\left(1\right)\\x^2+x-4=0\left(2\right)\end{cases}}\)

\(\Delta_{\left(1\right)}=\left(-1\right)^2-\left(-4\left(1.5\right)\right)=21\)

\(\Leftrightarrow x=\frac{\sqrt{21}+1}{2}\left(tm\right)\)

\(\Delta_{\left(2\right)}=1^2-\left(-1\left(1.4\right)\right)=17\)

\(\Rightarrow x=-\frac{\sqrt{17}+1}{2}\)

Kim Trí Ngân
Xem chi tiết
Rell
Xem chi tiết
Hung nguyen
29 tháng 7 2021 lúc 19:06

\(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)

\(\Leftrightarrow\left(2\sqrt{2x+4}+4\sqrt{2-x}\right)^2=\left(\sqrt{9x^2+16}\right)^2\)

\(\Leftrightarrow4\left(2x+4\right)+16\left(2-x\right)+16\sqrt{2x+4}\sqrt{2-x}=9x^2+16\)

\(\Leftrightarrow4.2\left(4-x^2\right)+16\sqrt{2\left(4-x^2\right)}=x^2+8x\)

Đặt \(\sqrt{2\left(4-x^2\right)}=a\)

\(\Rightarrow4a^2+16a=x^2+8x\)

\(\Leftrightarrow\left(2a-x\right)\left(2a+x+8\right)=0\)

Làm nốt

✿.。.:* ☆:**:.Lê Thùy Lin...
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 10:56

2: ĐKXĐ: x>=0

\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)

=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)

=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)

=>\(-2\sqrt{3x}=-4\)

=>\(\sqrt{3x}=2\)

=>3x=4

=>\(x=\dfrac{4}{3}\left(nhận\right)\)

3: 

ĐKXĐ: x>=0

\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)

=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)

=>\(13\sqrt{2x}=20+3\sqrt{2}\)

=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)

=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)

=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)

4: ĐKXĐ: x>=-1

\(\sqrt{16x+16}-\sqrt{9x+9}=1\)

=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>\(\sqrt{x+1}=1\)

=>x+1=1

=>x=0(nhận)

5: ĐKXĐ: x<=1/3

\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)

=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)

=>\(5\sqrt{1-3x}=10\)

=>\(\sqrt{1-3x}=2\)

=>1-3x=4

=>3x=1-4=-3

=>x=-3/3=-1(nhận)

6: ĐKXĐ: x>=3

\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)

=>x-3=16

=>x=19(nhận)