Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vương bảo ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 6 2023 lúc 8:01

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

BA=BE

=>ΔBAD=ΔBED

b: Xét ΔBAE có BA=BE và góc B=60 độ

nên ΔBAE đều

=>BE=AB=6cm

=>BC=12cm

Lê Phương Mai
Xem chi tiết
Etermintrude💫
5 tháng 5 2021 lúc 7:30

undefinedundefined

Hồ Nguyễn Ngọc Trang
Xem chi tiết
Trần Cao Vỹ Lượng
20 tháng 12 2018 lúc 8:37

B E C A D F

Xét \(\Delta ABD\) và \(\Delta EBD\)

ta có DA = DE ( gt )

        BA = BE ( gt )

        BD là cạnh chung

=> \(\Delta ABD=\Delta EBD\left(c.c.c\right)\)

TRẦN THỊ THU THẢO
Xem chi tiết
Hàn Thái Tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2023 lúc 10:01

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D co

BE chung

BA=BD

=>ΔBAE=ΔBDE

b: BA=BD

EA=ED

=>BE là trung trực của AD

c: Xét ΔBDM vuông tại D và ΔBAC vuông tại A có

BD=BA

góc B chung

=>ΔBDM=ΔBAC

=>BM=BC

=>ΔBMC cân tại B

『Kuroba ム Tsuki Ryoo...
16 tháng 5 2023 lúc 16:35

`a,`

Xét `2 \Delta` vuông `ABE` và `DBE`:

`\text {BE chung}`

`\text {BA = BD (2 cạnh tương ứng)}`

`=> \Delta ABE = \Delta DBE (ch-cgv)`

`b,`

Gọi I là giao điểm của AD và BE

Vì `\Delta ABE = \Delta DBE (a)`

`->` $\widehat {ABE} = \widehat {DBE} (\text {2 góc tương ứng})$

Xét `\Delta ABI` và `\Delta DBI`:

`\text {BA = BD (gt)}`

$\widehat {ABI} = \widehat {DBI}$

`\text {BI chung}`

`=> \Delta ABI = \Delta DBI (c-g-c)`

`->` $\widehat {BIA} = \widehat {BID} (\text {2 cạnh tương ứng})$

Mà `2` góc này ở vị trí kề bù

`->` $\widehat {BIA} + \widehat {BID} = 180^0$

`->` $\widehat {BIA} = \widehat {BID} =$\(\dfrac{180}{2}=90^0\)

`-> \text {BI} \bot \text {AD}` 

Mà `\text {I} \in \text {BE}`

`-> \text {BE} \bot \text{AD}`

`c,`

Vì `\Delta ABE = \Delta DBE (a)`

`-> \text {AE = DE (2 cạnh tương ứng)}`

Xét `\Delta AEM` và `\Delta DEC`:

`\text {AE = DE}`

$\widehat {AEM} = \widehat {DEC} (\text {2 góc đối đỉnh})$

$\widehat {MAE} = \widehat {CDE} (=90^0)$

`=> \Delta AEM = \Delta DEC (cgv-gn)`

`-> \text {AM = DC (2 cạnh tương ứng)}`

Ta có: \(\left\{{}\begin{matrix}\text{BM = AM + AB}\\\text{BC = BD + DC}\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}\text{BA = BD}\\\text{AM = DC}\end{matrix}\right.\)

`-> \text {BM = BC}`

Xét `\Delta MBC`:

`\text {BM = BC}`

`-> \Delta MBC` cân tại B.

loading...

Triss
Xem chi tiết
Ngô Bá Hùng
3 tháng 5 2023 lúc 10:21

a)xét tg ABD và tg CBD có:

+ AB=BE(gt)

+ góc ABD = EBD (BD là phân giác)

+BD chung

=>tg ABD= tg EBD(c.gc)

b) vì tg ABD=tgEBD 

=> AD=DE và góc BAD = BED (=90 độ)

=> DE ⊥ BC

=> tg DEC có DC là cạnh huyền =>DC>ED mà ED=AD => DC>AD

c)xét tg BFE và tg BCA có:

+ Góc E = A (=90 độ)

+góc B chung

+ BE=BA

=>tg BFE =tg BCA (gcg)

=>BF=BC 

=> tg BFC cân tại B

vì S là td FC

=>BS vừa là trung tuyến vừa là đường cao

=>BS⊥FC (1)

tg BFC có: D là giao của 2 đg cao CA và FE

=> D là trực tâm => BD ⊥ FC (2)

từ 1 và 2 => B,D,S thẳng hàng

 

Kiều Vũ Linh
3 tháng 5 2023 lúc 10:22

Sửa đề: AB = BE (không phải AB = AE)

Gởi hình vẽ trước, đi công việc, tí sửa sau

Kiều Vũ Linh
3 tháng 5 2023 lúc 10:46

Xét ∆ABD và ∆EBD có:

∠ABD = ∠EBD (do BD là phân giác của ∠B)

BD chung

AB = BE (gt)

⇒ ∆ABD = ∆EBD (c-g-c)

b) Do ∆ABD = ∆EBD (cmt)

⇒ ∠BAD = ∠BED (hai góc tương ứng)

⇒ ∠BED = 90⁰

⇒ ∠CED = 90⁰

⇒ ∆CED vuông tại E

⇒ CD là cạnh huyền nên là cạnh lớn nhất

⇒ CD > DE (1)

Do ∆ABD = ∆EBD (cmt)

⇒ AD = DE (hai cạnh tương ứng) (2)

Từ (1) và (2) ⇒ CD > AD

c) Xét hai tam giác vuông:

∆ABC và ∆EBF có:

AB = BE (gt)

∠B chung

⇒ ∆ABC = ∆EBF (cạnh góc vuông - góc nhọn kề)

⇒ BC = BF (hai cạnh tương ứng)

⇒ ∆BCF cân tại B

Lại có BD là phân giác của ∠B

⇒ BD cũng là đường trung tuyến của ∆BCF

Mà S là trung điểm FC

⇒ B, D, S thẳng hàng

 

đoàn hữu trường
Xem chi tiết
đoàn hữu trường
6 tháng 3 2022 lúc 8:26

help

 

đoàn hữu trường
6 tháng 3 2022 lúc 9:00

xong 

mình chết rồi

Trần Bảo Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 22:22

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: BA=BE

DA=DE
=>BD la trung trực của AE

c: Xét ΔBEF vuông tại E và ΔBAC vuông tại A co

BE=BA

góc EBF chung

=>ΔBEF=ΔBAC

=>BF=BC

Xét ΔFCB có BA/BF=BE/BC

nên AE//CF

Hoàng Thị Ngọc Ánh
Xem chi tiết
Trần Tuấn Hoàng
4 tháng 3 2022 lúc 22:47

-Câu 1,2 của bài này na ná với nhau á, bạn tham khảo:

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-tren-canh-bc-lay-d-d-khong-trung-b-va-bdbc2-tren-tia-doi-cua-tia-cb-lay-e-sao-cho-bdce-cac-duong-vuong-goc-voi-bc-ke-tu-d-va-e-cat-duong-thang-ab-va-ac-lan-luot-tai.4784314158042

Trần Tuấn Hoàng
5 tháng 3 2022 lúc 9:16

c. -Kẻ tia phân giác của \(\widehat{BAC}\) cắt đường vuông góc với MN (tại I) tại F.

-Xét △ABF và △ACF:

\(AB=AC\) (△ABC cân tại A).

\(\widehat{BAF}=\widehat{CAF}\) (AF là tia phân giác của \(\widehat{BAC}\))

AF là cạnh chung.

\(\Rightarrow\)△ABF=△ACF (c-g-c).

\(\Rightarrow BF=CF\) (2 cạnh tương ứng).

\(\widehat{ABF}=\widehat{ACF}\) (2 góc tương ứng).

-Xét △MIF và △NIF:

\(MI=IN\left(cmt\right)\)

\(\widehat{MIF}=\widehat{NIF}=90^0\)

IF là cạnh chung.

\(\Rightarrow\)△MIF=△NIF (c-g-c).

\(\Rightarrow MF=NF\) (2 cạnh tương ứng).

-Xét △BMF và △CNF:

\(BM=NC\)(△MBD=△NCE)

\(MF=NF\left(cmt\right)\)

\(BF=CF\left(cmt\right)\)

\(\Rightarrow\)△BMF=△CNF (c-c-c).

\(\Rightarrow\widehat{MBF}=\widehat{NCF}\) (2 cạnh tương ứng).

Mà \(\widehat{MBF}=\widehat{MCF}\)(cmt)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}\)

Mà \(\widehat{NCF}+\widehat{MCF}=180^0\) (kề bù)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}=\dfrac{180^0}{2}=90^0\)

\(\Rightarrow\)AB⊥BF tại B.

\(\Rightarrow\) F là giao của đường vuông góc với AB tại B và tia phân giác của góc \(\widehat{BAC}\).

\(\Rightarrow\)F cố định.

-Vậy đường thẳng vuông góc với MN luôn đi qua điểm cố định khi D thay đổi trên đoạn BC.