Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hàn Thái Tú

Cho ABC vuông tại A có AB < AC, Trên cạnh BC lấy điểm D sao cho BA = BD. Từ D kẻ DE BC (E AC), Đường thẳng DE cắt đường thẳng AB tại M. Chứng minh rằng

     a) Tam giác ABE = Tam giác DBE

     b) BE Vuông Góc AD

    c) Tam giác MBC cân

Nguyễn Lê Phước Thịnh
16 tháng 5 2023 lúc 10:01

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D co

BE chung

BA=BD

=>ΔBAE=ΔBDE

b: BA=BD

EA=ED

=>BE là trung trực của AD

c: Xét ΔBDM vuông tại D và ΔBAC vuông tại A có

BD=BA

góc B chung

=>ΔBDM=ΔBAC

=>BM=BC

=>ΔBMC cân tại B

『Kuroba ム Tsuki Ryoo...
16 tháng 5 2023 lúc 16:35

`a,`

Xét `2 \Delta` vuông `ABE` và `DBE`:

`\text {BE chung}`

`\text {BA = BD (2 cạnh tương ứng)}`

`=> \Delta ABE = \Delta DBE (ch-cgv)`

`b,`

Gọi I là giao điểm của AD và BE

Vì `\Delta ABE = \Delta DBE (a)`

`->` $\widehat {ABE} = \widehat {DBE} (\text {2 góc tương ứng})$

Xét `\Delta ABI` và `\Delta DBI`:

`\text {BA = BD (gt)}`

$\widehat {ABI} = \widehat {DBI}$

`\text {BI chung}`

`=> \Delta ABI = \Delta DBI (c-g-c)`

`->` $\widehat {BIA} = \widehat {BID} (\text {2 cạnh tương ứng})$

Mà `2` góc này ở vị trí kề bù

`->` $\widehat {BIA} + \widehat {BID} = 180^0$

`->` $\widehat {BIA} = \widehat {BID} =$\(\dfrac{180}{2}=90^0\)

`-> \text {BI} \bot \text {AD}` 

Mà `\text {I} \in \text {BE}`

`-> \text {BE} \bot \text{AD}`

`c,`

Vì `\Delta ABE = \Delta DBE (a)`

`-> \text {AE = DE (2 cạnh tương ứng)}`

Xét `\Delta AEM` và `\Delta DEC`:

`\text {AE = DE}`

$\widehat {AEM} = \widehat {DEC} (\text {2 góc đối đỉnh})$

$\widehat {MAE} = \widehat {CDE} (=90^0)$

`=> \Delta AEM = \Delta DEC (cgv-gn)`

`-> \text {AM = DC (2 cạnh tương ứng)}`

Ta có: \(\left\{{}\begin{matrix}\text{BM = AM + AB}\\\text{BC = BD + DC}\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}\text{BA = BD}\\\text{AM = DC}\end{matrix}\right.\)

`-> \text {BM = BC}`

Xét `\Delta MBC`:

`\text {BM = BC}`

`-> \Delta MBC` cân tại B.

loading...


Các câu hỏi tương tự
ミ★ΉảI ĐăПG 7.12★彡
Xem chi tiết
Trình trọng hưng
Xem chi tiết
Nga Pham
Xem chi tiết
Meopeow1029
Xem chi tiết
khánh nguyễn
Xem chi tiết
Hazi
Xem chi tiết
Thuy Pham
Xem chi tiết
Huỳnh Kim Ngân
Xem chi tiết
Nguyễn Minh Hoàng
Xem chi tiết