a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
=>ΔBAE=ΔBDE
b; BA=BD
EA=ED
=>BE là trung trực của AD
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
=>ΔBAE=ΔBDE
b; BA=BD
EA=ED
=>BE là trung trực của AD
Cho ABC vuông tại A có AB < AC, Trên cạnh BC lấy điểm D sao cho BA = BD. Từ D kẻ DE BC (E AC), Đường thẳng DE cắt đường thẳng AB tại M. Chứng minh rằng
a) Tam giác ABE = Tam giác DBE
b) BE Vuông Góc AD
c) Tam giác MBC cân
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại E. Từ E kẻ ED vuông góc với BC tại D.
a, Chứng minh tam giác ABE= tam giác DBE.
b, Chứng minh BE là đường trung trực của đoạn thẳng AD.
c, Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh AD là tia phân giác của góc BAD
d, Gọi K là giao điểm của AH và BE. Chứng minh rằng DK song song với AC
cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc B cắt AC tại D trên cạnh BC lấy điểm E sao cho BE =BA vẽ AH vuông góc với BC tại H
a chứng minh tam giác ABD = tam giác EBD và AD = ED
b chứng minh AH song song với DE
Cho Tam giác ABC vuông tại A.Trên cạnh BC lấy điểm E sao cho BE = BA. Qua E vẽ đường thẳng vuông góc với BC , cắt AC tại D và cắt tia BA tại K
a)Chứng minh ∆ABD = ∆EBD rồi suy ra BD là tia phân giác của góc ABC
b) Chứng minh ∆BEK =∆ BAC
c) Chứng minh AE // KC
d) Vẽ DI vuông góc với KC tại I.Chứng minh ba điểm B , D , I thẳng hàng
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BD=AB. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh: tam giác BAE = tam giác BDE. Suy ra: AE = ED.
b) Gọi F là giao điểm của tia DE và tia BA. Chứng minh: tam giác FEC cân.
c) Gọi K là trung điểm của FC. Chứng minh: B, E, K thẳng hàng.
cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Trên tia BA lấy điểm F sao cho BF=BC. Kẻ BD là tia phân giác của góc ABC(D thuộc AC). Chứng minh rằng:
a) Tam giác ABD = tam giác EBD từ đó suy ra AD = ED
b) BD là đg trung trực của đoạn thẳng AE và AD < DC
c) Ba điểm E ,D, F thẳng hàng
Cho tam giác ABC vuông tại D có BD là đường phân giác. Trên tia BC lấy điểm E sao cho BE = BA. Đường thẳng DE cắt AB tại F. Gọi I là giao điểm của BD và AE.
a) Chứng minh DE vuông góc với BC
b) Tính khoản cách từ điểm D đến đường thẳng BC . Biết AB 12cm , BD = 13 cm.
c) Chứng minh BD là đường trung trực của đoạn thẳng AE.
d) Tam giác DFC là tam giác gì? Vì sao?
e) Gọi M là trung điểm của FC. Chứng minh ba điểm B , D , M thẳng hàng.
f) So sánh BC-AB và AC-DA
Bài 4: Cho△ABC vuông tại A (AB< AC) ,BE là tia phân giác góc ABC (E ∈AC) . Trên cạnh BC lấy D sao cho AB = BD
1) Chứng minh : △ABE = △DBE
2) Chứng minh : ED ⊥BC
3) Qua A vẽ đường thẳng vuông góc với BC tại H . Chứng minh :AD là tia phân giác góc HAC.