Tìm số tự nhiên x thỏa mãn cả 2 BPT sau: 6 (1-x) + 4 (2-x) ≤ 3 ( 1-3x) và \(\dfrac{1-2x}{4}-2< \dfrac{-5x}{8}\)
Giai các bpt sau
a,\(\dfrac{5x^2-3}{5}+\dfrac{3x-1}{4}< \dfrac{x\left(2x+3\right)}{2}-5\)
b,\(\dfrac{5x-2}{-3}\)\(-\dfrac{2x^2-x}{-2}>\dfrac{x\left(1-3x\right)}{-3}-\dfrac{5x}{-4}\)
a: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(2x+3\right)-100\)
\(\Leftrightarrow20x^2-12x+15x-5< 20x^2+30x-100\)
=>3x-5<=30x-100
=>30x-100>3x-5
=>27x>95
hay x>95/27
b: \(\Leftrightarrow4\left(5x-2\right)-6\left(2x^2-x\right)< 4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-8-12x^2+6x< 4x-12x^2-15x\)
=>26x-8<-11x
=>37x<8
hay x<8/37
Bài 1.
a.Rút gọn P=\(\left(\dfrac{x+1}{3x^2+3x}+\dfrac{1-2x}{6x^2-3x}-1\right):\dfrac{1-x}{2x}\)
b.Tìm x nguyên để P nguyên
c.Tìm x để P<1
Bài 2.
a.Tìm số dư của phép chia (x+2)(x+4)(x+6)(x+8) +2010 cho \(x^2+10x+21\)
b.tìm x,y nguyên thỏa mãn \(5x^2+2xy-4x-40=0\)
Bài 3. Cho ΔABC ( góc A=90 độ; góc B=60 độ),phân giác BD.Gọi I là trung điểm của DC.Kẻ IN//BD ; MN//AC
a.c/m AMNI là hình thang cân
b.Cho AB=4cm.Tính các cạnh còn lại của tứ giác AMNI
Bài 1:
a: ĐKXĐ: \(x\notin\left\{0;-1;\dfrac{1}{2}\right\}\)
\(P=\left(\dfrac{x+1}{3x^2+3x}+\dfrac{1-2x}{6x^2-3x}-1\right):\dfrac{1-x}{2x}\)
\(=\left(\dfrac{x+1}{3x\left(x+1\right)}-\dfrac{2x-1}{3x\left(2x-1\right)}-1\right)\cdot\dfrac{2x}{-\left(x-1\right)}\)
\(=\left(\dfrac{1}{3x}-\dfrac{1}{3x}-1\right)\cdot\dfrac{-2x}{x-1}\)
\(=\left(-1\right)\cdot\dfrac{-2x}{x-1}=\dfrac{2x}{x-1}\)
b: Để P nguyên thì \(2x⋮x-1\)
=>\(2x-2+2⋮x-1\)
=>\(2⋮x-1\)
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3;-1\right\}\)
Kết hợp ĐKXĐ, ta được:
\(x\in\left\{2;3\right\}\)
c: P<1
=>P-1<0
=>\(\dfrac{2x}{x-1}-1< 0\)
=>\(\dfrac{2x-x+1}{x-1}< 0\)
=>\(\dfrac{x+1}{x-1}< 0\)
=>-1<x<1
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}-1< x< 1\\x\ne0\end{matrix}\right.\)
câu 1 Có bao nhiêu giá trị nguyên của x thỏa mãn cả hai bất phương trình sau:
\(\dfrac{x+2}{5}-\dfrac{3x-7}{4}>-5\)
và \(\dfrac{3x}{5}-\dfrac{x-4}{3}+\dfrac{x+2}{6}>6\)
a, 3 b,1 c,4 d,2
Giải các phương trình sau: (TM ĐK)
1) \(\dfrac{11}{x}=\dfrac{9}{x+1}+\dfrac{2}{x-4}\)
2) \(\dfrac{14}{3x-12}-\dfrac{2+x}{x-4}=\dfrac{3}{8-2x}-\dfrac{5}{6}\)
3) \(\dfrac{x+5}{x^2-5x}-\dfrac{x+25}{2x^2-50}=\dfrac{x-5}{2x^2+10}\)
4) \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)
5) \(\left(1-\dfrac{x-1}{x+1}\right)\left(x+2\right)=\dfrac{x+1}{x-1}+\dfrac{x-1}{x+1}\)
mng giúp mk bài này nha. Cảm ơn bạn nhiều
\(1,\left(dk:x\ne0,-1,4\right)\)
\(\Leftrightarrow\dfrac{9}{x+1}+\dfrac{2}{x-4}-\dfrac{11}{x}=0\)
\(\Leftrightarrow\dfrac{9x\left(x-4\right)+2x\left(x+1\right)-11\left(x+1\right)\left(x-4\right)}{x\left(x+1\right)\left(x-4\right)}=0\)
\(\Leftrightarrow9x^2-36x+2x^2+2x-11x^2+44x-11x+44=0\)
\(\Leftrightarrow-x=-44\)
\(\Leftrightarrow x=44\left(tm\right)\)
\(2,\left(đk:x\ne4\right)\)
\(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{2+x}{x-4}-\dfrac{3}{2\left(x-4\right)}+\dfrac{5}{6}=0\)
\(\Leftrightarrow\dfrac{14.2-6\left(2+x\right)-3.3+5\left(x-4\right)}{6\left(x-4\right)}=0\)
\(\Leftrightarrow28-12-6x-9+5x-20=0\)
\(\Leftrightarrow-x=13\)
\(\Leftrightarrow x=-13\left(tm\right)\)
1. Giải các BPT
a) \(\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)
b)\(\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\)
c) (x+3)2\(\le\)x2-7
\(\text{a) }\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\\ \Leftrightarrow4\left(5x^2-3x\right)+5\left(3x+1\right)< 10x\left(2x+1\right)-15\\ \Leftrightarrow20x^2-12x+15x+5< 20x^2+10x-15\\ \Leftrightarrow20x^2+3x-20x^2-10x< -15-5\\ \Leftrightarrow-7x< -20\\ \Leftrightarrow x>\dfrac{20}{7}\)
Vậy bất phương trình có nghiệm \(x>\dfrac{20}{7}\)
\(\text{b) }\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\\ \Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)\ge4x\left(1-3x\right)-15x\\ \Leftrightarrow20x-80-12x^2-6x\ge4x-12x^2-15x\\ \Leftrightarrow-12x^2+14x+12x^2+11x\ge80\\ \Leftrightarrow25x\ge80\\ \Leftrightarrow x\ge\dfrac{16}{5}\)
Vậy bất phương trình có nghiệm \(x\ge\dfrac{16}{5}\)
\(\text{c) }\left(x+3\right)^2\le x^2-7\\ \Leftrightarrow x^2+6x+9\le x^2-7\\ \Leftrightarrow x^2+6x-x^2\le-7-9\\ \Leftrightarrow6x\le-16\\ \Leftrightarrow x\le-\dfrac{8}{3}\)
Vậy bất phương trình có nghiệm \(x\le-\dfrac{8}{3}\)
1. Giải các phương trình sau:
a. x-\(\dfrac{5x+2}{6}\)=\(\dfrac{7-3x}{4}\)
b. (3x-1)(x-3)(7-2x)=0
c. /3x/=4x+8
2. Giải bpt:
2x(6x-1)≥(3x-2)(4x+3)
Câu 1:
a) \(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)
\(\Leftrightarrow\dfrac{12x-2\left(5x+2\right)}{12}=\dfrac{3\left(7-3x\right)}{12}\)
\(\Leftrightarrow12x-10x-4=21-9x\)
\(\Leftrightarrow11x=25\)
\(\Leftrightarrow x=\dfrac{25}{11}\)
b) \(\left(3x-1\right)\left(x-3\right)\left(7-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\Leftrightarrow x=\dfrac{1}{3}\\x-3=0\Leftrightarrow x=3\\7-2x=0\Leftrightarrow x=3,5\end{matrix}\right.\)
c) \(\left|3x\right|=4x+8\) (1)
Ta có: \(\left|3x\right|=3x\Leftrightarrow3x\ge0\Leftrightarrow x\ge0\)
\(\left|3x\right|=-3x\Leftrightarrow3x< 0\Leftrightarrow x< 0\)
Với \(x\ge0\), phương trình (1) có dạng:
\(3x=4x+8\Leftrightarrow-x=8\Leftrightarrow x=-8\)
(không thoả mãn điều kiện) \(\rightarrow\) loại
Với \(x< 0\), phương trình (1) có dạng:
\(-3x=4x+8\Leftrightarrow-7x=8\Leftrightarrow x=-\dfrac{8}{7}\)
(thoả mãn điều kiện) \(\rightarrow\) nhận
Vậy phương trình đã cho có 1 nghiệm \(x=-\dfrac{8}{7}\)
Câu 2:
\(2x\left(6x-1\right)\ge\left(3x-2\right)\left(4x+3\right)\)
\(\Leftrightarrow12x^2-2x\ge12x^2+9x-8x-6\)
\(\Leftrightarrow-3x\ge-6\)
\(\Leftrightarrow x\le2\)
Vậy bất phương trình đã cho có nghiệm \(x\le2\)
\(1.\)
\(a.\) \(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)
\(\Leftrightarrow\dfrac{24x}{24}-\dfrac{4\left(5x+2\right)}{24}=\dfrac{6\left(7-3x\right)}{24}\)
\(\Leftrightarrow24x-4\left(5x+2\right)=6\left(7-3x\right)\)
\(\Leftrightarrow24x-20x-8=42-18x\)
\(\Leftrightarrow24x-20x+18x=42+8\)
\(\Leftrightarrow22x=50\)
\(\Leftrightarrow x=\dfrac{50}{22}=\dfrac{25}{11}\)
Vậy : ...........
\(b.\) \(\left(3x-1\right)\left(x-3\right)\left(7-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-3=0\\7-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy : ..............
\(c.\) \(\left|3x\right|=4x+8\) \(\left(1\right)\)
* Với \(3x< 0\Rightarrow x< 0\)
\(\left|3x\right|=-3x\)
Khi đó : \(\left(1\right)\Rightarrow-3x=4x+8\)
\(\Rightarrow-3x-4x=8\)
\(\Rightarrow-7x=8\)
\(\Rightarrow x=-\dfrac{8}{7}\) ( Thoả mãn điều kiện )
* Với \(3x\ge0\Rightarrow x\ge0\)
\(\left|3x\right|=3x\)
Khi đó : \(\left(1\right)\Rightarrow3x=4x+8\)
\(\Rightarrow3x-4x=8\)
\(\Rightarrow-x=8\)
\(\Rightarrow x=-8\) ( Không thoả mãn điều kiện )
Vậy : ..............
\(2.\)
\(2x\left(6x-1\right)\ge\left(3x-2\right)\left(4x+3\right)\)
\(\Leftrightarrow12x^2-2x\ge\left(12x^2+9x-8x-6\right)\)
\(\Leftrightarrow12x^2-2x-12x^2-9x+8x\ge-6\)
\(\Leftrightarrow-3x\ge-6\)
\(\Leftrightarrow x\le2\)
Vậy : ..............
giúp mình giải bpt vs
\(\dfrac{\left|2x-1\right|-x}{2x}>1;\dfrac{2-\left|x-2\right|}{x^2-1}\ge0;\dfrac{\sqrt{x+4}-2}{4-9x^2}\le0;\dfrac{x^2-2x-3}{\sqrt[3]{3x-1}+\sqrt[3]{4-5x}}\ge0;\)\(3x^2-10x+3\ge0;\left(\sqrt{2}-x\right)\left(x^2-2\right)\left(2x-4\right)< 0;\dfrac{1}{x+9}-\dfrac{1}{x}>\dfrac{1}{2};\dfrac{2}{1-2x}\le\dfrac{3}{x+1}\)
giải các bpt sau
a,\(\dfrac{x^2+2x-13}{x-1}< 1\)
b,\(\dfrac{3x^2+x-4}{x-1}< 3\)
c,\(\dfrac{2x^2-3x+1}{x+2}>0\)
d,\(\dfrac{x^2-x-6}{x^2-1}\le1\)
a: =>\(\dfrac{x^2+2x-13-x+1}{x-1}< 0\)
=>\(\dfrac{x^2+x-12}{x-1}< 0\)
=>\(\dfrac{\left(x+4\right)\left(x-3\right)}{x-1}< 0\)
=>1<x<3 hoặc x<-4
b: =>\(\dfrac{3x^2+4x-3x-4}{x-1}< 3\)
=>3x+4<3
=>3x<-1
=>x<-1/3
c: TH1: 2x^2-3x+1>0 và x+2>0
=>(2x-1)(x-1)>0 và x+2>0
=>x>1
TH2: (2x-1)(x-1)<0 và x+2<0
=>x<-2 và 1/2<x<1
=>Loại
Giải bpt sau
a, \(\left(x+3\right)^2-\left(x-3\right)^2\le3\left(x+1
\right)\)
b, \(2\left(x+3\right).\left(x+4\right)>\left(x-2\right)^2+\left(x-1\right)^2\)
c, \(5x^2-18x+19-\left(2x-3\right)^2>0\)
d, \(\dfrac{\left(3x-2\right)^2}{4}-\dfrac{3\left(x-2\right)}{8}-1>\dfrac{-15x\left(5-3x\right)}{2}\)
e, \(2x^2+2x+2-\dfrac{15\left(x-1\right)}{2}-1>2x\left(x-2,75\right)\)
g, \(\dfrac{5x^2-3}{5}+\dfrac{3x-1}{4}< \dfrac{x\left(2x+3\right)}{2}-5\)