Những câu hỏi liên quan
KA GAMING MOBILE
Xem chi tiết
Vũ Quang Huy
10 tháng 4 2022 lúc 20:49

tham khảo

Ta có x:a=y:b=z:c=x+y+z:a+b+c=x+y+z( vì a+b+c=1)

do đó (x+y+z)^2=x^2:a^2=y^2:b^2=z^2:c^2=x^2+y^2+z^2:a^2+b^2+ c^2=x^2+y^2+z^2( vì a^2+b^2+c^2)

Vậy (x+y+z)^2=x^2+y^2+z^2

Bình luận (3)
Hoàng nhật Giang
Xem chi tiết
Thợ Đào Mỏ Padda
16 tháng 8 2017 lúc 9:46

SORY I'M I GRADE 6

Bình luận (2)
Lý hải Dương
3 tháng 5 2018 lúc 9:24

????????

Bình luận (0)
Nguyễn Khang
19 tháng 5 2020 lúc 19:31

mày hỏi vả bài kiểm tra à thằng điên 

Bình luận (0)
 Khách vãng lai đã xóa
Le quy mui
Xem chi tiết
ngonhuminh
7 tháng 1 2017 lúc 20:17

cho đáp án câu (a) lên lấy đáp án (a) => b 

Bình luận (0)
alibaba nguyễn
7 tháng 1 2017 lúc 21:07

Giải ra dài lắm nên cho đáp án nè

a/ B = (z - x - y)(z - x + y)(z + x - y)(z + x + y)

b/ Nó là 3 cạnh tam giác nên

(z - x - y ) < 0

(z - x + y) > 0

(z + x - y) > 0

(z + x + y) > 0

Nên B < 0

Bình luận (0)
Viêt Thanh Nguyễn Hoàn...
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2021 lúc 17:31

\(VT\le\dfrac{x}{2x+2y+2}+\dfrac{y}{2yz+2z+2}+\dfrac{z}{2z+2x+2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{x}{x+y+1}+\dfrac{y}{y+z+1}+\dfrac{z}{z+x+1}\le1\)

\(\Leftrightarrow\dfrac{y+1}{x+y+1}+\dfrac{z+1}{y+z+1}+\dfrac{x+1}{z+x+1}\ge2\)

Thật vậy, ta có:

\(VT=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(z+x+1\right)}+\dfrac{\left(y+1\right)^2}{\left(y+1\right)\left(x+y+1\right)}+\dfrac{\left(z+1\right)^2}{\left(z+1\right)\left(y+z+1\right)}\)

\(VT\ge\dfrac{\left(x+y+z+3\right)^2}{\left(x^2+y^2+z^2\right)+3\left(x+y+z\right)+xy+yz+zx+3}\)

\(VT\ge\dfrac{6\left(x+y+z\right)+2\left(xy+yz+zx\right)+12}{3\left(x+y+z\right)+xy+yz+zx+6}=2\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
 ☘ Nhạt ☘
Xem chi tiết
Thanh Tùng DZ
30 tháng 4 2020 lúc 15:23

mình nghĩ phải sửa dấu thành \(\ge\)

Bình luận (0)
 Khách vãng lai đã xóa
Thanh Tùng DZ
30 tháng 4 2020 lúc 15:29

BĐT cần chứng minh tương đương với :

\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)

\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)

Ta có : \(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)

Tương tự : \(b^2c+b^2c+\frac{1}{bc^2}\ge3b;c^2a+c^2a+\frac{1}{ca^2}\ge3c\)

Cộng lại theo vế, ta được :

\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)

Dấu "=" xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
sakura mi
Xem chi tiết
Kiệt Nguyễn
13 tháng 7 2019 lúc 6:31

1) \(\frac{x-y}{x+y}=\frac{z-x}{z+x}\)

\(\Leftrightarrow\left(x-y\right)\left(z+x\right)=\left(z-x\right)\left(x+y\right)\)

\(\Leftrightarrow z\left(x-y\right)+x\left(x-y\right)=x\left(z-x\right)+y\left(z-x\right)\)

\(\Leftrightarrow xz-zy+x^2-xy=xz-x^2+yz-xy\)

\(\Leftrightarrow-zy+x^2=-x^2+yz\)

\(\Leftrightarrow-2x^2=-2zy\)

\(\Leftrightarrow x^2=yz\)(đpcm)

Bình luận (0)
Anna Vũ
Xem chi tiết
Việt Tuân Nguyễn Đặng
Xem chi tiết
Nguyễn Huy Thắng
3 tháng 9 2018 lúc 12:14

hình như thiếu cái gì đó

Bình luận (1)
Dương Diệu
Xem chi tiết
Hoang Hung Quan
3 tháng 7 2017 lúc 9:03

Bài 2:

a) Áp dụng BĐT AM - GM ta có:

\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)

\(\ge\dfrac{1}{a+b}\) (Đpcm)

b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:

\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)

\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)

Bình luận (0)
Lightning Farron
3 tháng 7 2017 lúc 9:10

Bài 1:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)

Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)

\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)

\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng

Bình luận (0)