Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Viêt Thanh Nguyễn Hoàn...

Cho a,b,c dương thỏa mãn : \(x^2+y^2+z^2=3\)

Chứng minh rằng : 

\(\dfrac{x}{x^2+2y+3}+\dfrac{y}{y^2+2z+3}+\dfrac{z}{z^2+2x+3}\le\dfrac{1}{2}\)

Nguyễn Việt Lâm
2 tháng 4 2021 lúc 17:31

\(VT\le\dfrac{x}{2x+2y+2}+\dfrac{y}{2yz+2z+2}+\dfrac{z}{2z+2x+2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{x}{x+y+1}+\dfrac{y}{y+z+1}+\dfrac{z}{z+x+1}\le1\)

\(\Leftrightarrow\dfrac{y+1}{x+y+1}+\dfrac{z+1}{y+z+1}+\dfrac{x+1}{z+x+1}\ge2\)

Thật vậy, ta có:

\(VT=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(z+x+1\right)}+\dfrac{\left(y+1\right)^2}{\left(y+1\right)\left(x+y+1\right)}+\dfrac{\left(z+1\right)^2}{\left(z+1\right)\left(y+z+1\right)}\)

\(VT\ge\dfrac{\left(x+y+z+3\right)^2}{\left(x^2+y^2+z^2\right)+3\left(x+y+z\right)+xy+yz+zx+3}\)

\(VT\ge\dfrac{6\left(x+y+z\right)+2\left(xy+yz+zx\right)+12}{3\left(x+y+z\right)+xy+yz+zx+6}=2\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)


Các câu hỏi tương tự
Vo Thi Minh Dao
Xem chi tiết
Ba Dao Mot Thoi
Xem chi tiết
Adu Darkwa
Xem chi tiết
Hoai Bao Tran
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
le diep
Xem chi tiết
camcon
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
Xem chi tiết