Với x,y là hai số thực dương: x+y+xy=15, tìm gtnn của biểu thức P=x^2+y^2
Tìm GTNN của biểu thức:
A=(x+y+1)^2/(xy+x+y) + (xy+x+y)/(x+y+1)^2 ( với x,y là các số thực dương)
Đặt \(B=\frac{\left(x+y+1\right)^2}{xy+x+y}\)
Ta có bđt sau \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\) tự chứng mình nha
Áp dụng \(a=x,b=y,c=1\)
Ta có : \(B=\frac{\left(x+y+1\right)^2}{xy+x+y}\ge3\)
Ta có : \(A=\frac{1}{B}+B=\frac{1}{B}+\frac{B}{9}+\frac{8B}{9}\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Dấu " = " xảy ra khi \(x=y=1\)
1/Tìm GTNN của biểu thức:
A=(x+y+1)^2/(xy+x+y) + (xy+x+y)/(x+y+1)^2 ( với x,y là các số thực dương)
2/ cho 3 số thực đôi một phân biệt a,b,c. Chứng minh
a^2/(b-c)^2 + b^2/(c-a)^2 + c^2/(a-b)^2
Cho x và y là hai số dương thỏa mãn: x+y=2. Tìm GTNN của biểu thức: Q=\(\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\)
Ta có: \(Q=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}=\dfrac{2}{x^2+y^2}+\dfrac{6}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}\)
Áp dụng BĐT phụ: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Rightarrow2\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)\ge2\left(\dfrac{4}{x^2+2xy+y^2}\right)=2\left[\dfrac{4}{\left(x+y\right)^2}\right]=2.\dfrac{4}{4}=2\)
Dấu "=" xảy ra khi x=y=1
Áp dụng BĐT phụ: \(ab\le\dfrac{\left(a+b\right)^2}{4}\)
\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2^2}{4}=1\)
Dấu"=" xảy ra khi x=y=1
\(\Rightarrow2xy\le2.1=2\)
\(\Rightarrow\dfrac{4}{2xy}\ge\dfrac{4}{2}=2\)
\(\Rightarrow Q=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\ge2+2=4\)
Dấu"=" xảy ra khi x=y=1
Cho x;y là hai số dương .Tìm GTNN của biểu thức \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
Đặt S=\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{x^2+2xy+y^2}{xy}=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{x^2+y^2}{xy}+2\)
Áp dụng BĐT Cosi ta có: \(x+y\ge2\sqrt{xy}\Leftrightarrow xy< \frac{\left(x+y\right)^2}{4}\)
Do đó \(S\ge\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{4\left(x^2+y^2\right)}{\left(x+y\right)^2}+2\ge2\sqrt{\frac{\left(x+y\right)^2}{x^2+y^2}\cdot\frac{4\left(x^2+y^2\right)}{\left(x+y\right)^2}}+2=6\)
Dấu "=" xảy ra <=> x=y
Vậy MinS=6 đạt được khi x=y
Ta có:
\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
= \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)
\(\ge\left(x+y\right)^2.\frac{4}{\left(x+y\right)^2}+\frac{4xy}{2xy}=6\)
Dấu "=" xảy ra <=> x = y
Vậy min \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)= 6 đạt tại x = y.
Cho x,y là hai số dương. Tìm GTNN của biểu thức:
M = \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
AM-GM thôi :))
\(M=1+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{xy}+2=3+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}+\frac{x^2+y^2}{2xy}\)
Áp dụng BĐT AM-GM:
\(\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}\ge2\sqrt{\frac{2xy}{x^2+y^2}.\frac{x^2+y^2}{2xy}}=2\)
\(\frac{x^2+y^2}{2xy}\ge\frac{2xy}{2xy}=1\)
\(\Rightarrow VT\ge3+2+1=6\)
Dấu = xảy ra khi x=y
Cho ba số thực dương x,y,z thỏa mãn x+y+z = 2. Tìm GTNN của biểu thức:
\(P=\dfrac{1}{xy}+\dfrac{1}{yz}\)
\(P=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}=\dfrac{4}{y\left(x+z\right)}\ge\dfrac{4}{\dfrac{\left(y+x+z\right)^2}{4}}=4\)
\(P_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};1;\dfrac{1}{2}\right)\)
cho x , y là hai số thực dương , tìm GTNN của biểu thức M = \(\frac{x.y}{x^2+y^2}+\frac{x^2+y^2}{x.y}\)
\(M=\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{xy}\)
\(=\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}+\frac{3}{4}.\frac{x^2+y^2}{xy}\)
\(\ge2\sqrt{\frac{xy}{x^2+y^2}.\frac{x^2+y^2}{4xy}}+\frac{3}{4}.\frac{2xy}{xy}\)
\(\Rightarrow M\ge1+\frac{3}{2}=\frac{5}{2}\)
Dấu = xảy ra khi \(x=y>0\)
cho x, y, z là 3 số thực dương có tổng bằng 10. Tìm GTNN của biểu thức P= xy/z+yz/x+zx/y
Áp dụng BĐT Cô-si cho 2 số thực dương \(\dfrac{xy}{z}\) và \(\dfrac{yz}{x}\) có:
\(\dfrac{xy}{z}+\dfrac{yz}{x}\) \(\ge\) 2\(\sqrt{\dfrac{xy}{z}\cdot\dfrac{yz}{x}}\) = 2\(\sqrt{y^2}\) = 2y (1)
Tương tự: \(\dfrac{yz}{x}+\dfrac{zx}{y}\ge2z\) (2)
\(\dfrac{xy}{z}+\dfrac{zx}{y}\ge2x\) (3)
Từ (1); (2); (3)
\(\Rightarrow\) \(\dfrac{2xy}{z}+\dfrac{2yz}{x}+\dfrac{2zx}{y}\ge2x+2y+2z\)
\(\Leftrightarrow\) 2\(\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\) \(\ge\) 2(x + y + z)
\(\Leftrightarrow\) \(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\ge x+y+z=10\)
Hay PMin = 10
Dấu "=" xảy ra \(\Leftrightarrow\) x = y = z = \(\dfrac{10}{3}\)
Vậy ...
Chúc bn học tốt!
cho hai số dương x,y thỏa mãn điều kiện x+y=1.Hãy tìm GTNN của biểu thức:
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{1}{2xy}\)
Áp dụng BĐT Schwarz : \(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}=4\)
Lại có \(\dfrac{1}{2xy}=\dfrac{2}{4xy}\ge\dfrac{2}{\left(x+y\right)^2}=2\)
Cộng vế với vế được P \(\ge6\) ("=" khi x = y = 1/2)
Vậy Min P = 6 <=> x = y = 1/2