so sánh các số
\(\sqrt{3}\) và \(5-\sqrt{8}\)
so sánh các số
\(\sqrt{3}\) và \(5-\sqrt{8}\)
\(5-\sqrt{8}>5-\sqrt{9}=5-3=2=\sqrt{4}>\sqrt{3}\)
Vậy \(\sqrt{3}< 5-\sqrt{8}\)
so sánh các số sau
\(\sqrt{3}\) và \(5-\sqrt{8}\)
so sánh
\(\sqrt{2}+\sqrt{3}\) và 2
\(\sqrt{8}+\sqrt{5}\) và \(\sqrt{7}-\sqrt{6}\)
\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)
\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)
\(\sqrt{2}\) + \(\sqrt{3}\) > 2
a) Tính và so sánh: \(\sqrt[3]{{ - 8}}.\sqrt[3]{{27}}\) và \(\sqrt[3]{{\left( { - 8} \right).27}}.\)
b) Tính và so sánh: \(\frac{{\sqrt[3]{{ - 8}}}}{{\sqrt[3]{{27}}}}\) và \(\sqrt[3]{{\frac{{ - 8}}{{27}}}}.\)
a: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=-2\cdot3=-6\)
\(\sqrt[3]{\left(-8\right)\cdot27}=\sqrt[3]{-216}=-6\)
Do đó: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=\sqrt[3]{\left(-8\right)\cdot27}\)
b: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=-\dfrac{2}{3}\)
\(\sqrt[3]{-\dfrac{8}{27}}=-\dfrac{2}{3}\)
Do đó: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=\sqrt[3]{-\dfrac{8}{27}}\)
so sánh \(\sqrt{3}\)và 5 - \(\sqrt{8}\)
mà
nFe=nFe2On=a(mol)nên 56a+a(112+16n)=14,4(1)
Vậy nSO2=0,1(mol)
\(\left(\sqrt{3}\right)^2=3\)
\(\left(5-\sqrt{8}\right)^2=33-10\sqrt{8}=3+30-10\sqrt{8}\)
mà \(0< 30-10\sqrt{8}\)
nên \(\sqrt{3}< 5-\sqrt{8}\)
Bài 1: So sánh các căn bậc hai số học
a) 1 và\(\sqrt{3}-1\) b) 2 và \(\sqrt{2}+1\) c) 2\(\sqrt{31}\)và 10 d)\(\sqrt{2}+\sqrt{11}\)và \(\sqrt{3}+5\)
So sánh các số:
a)\(\sqrt{7}-\sqrt{2}\)và 1
b) \(\sqrt{8}+\sqrt{5}\)và \(\sqrt{7}+\sqrt{6}\)
1)so sánh 2 số sau M=\(\sqrt{18}-\sqrt{8}\) và N=\(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
2)cho biểu thức A=\((\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}):(\dfrac{x-4}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}})\) với x>0,\(x\ne4\),\(x\ne9\)
câu 2 rút gọn A và tìm các giá trị nguyên của x để A nhận giá trị âm
1) So sánh:
N = \(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\left(\sqrt{5}-1\right)=1\)
M = \(\sqrt{18}-\sqrt{8}\)
\(=3\sqrt{2}-2\sqrt{2}\)
\(=\sqrt{2}\)
Ta có: \(1=\sqrt{1}\)
Mà 1 < 2
\(\Rightarrow\sqrt{1}< \sqrt{2}\)
Hay 1 \(< \sqrt{2}\)
Vậy N < M
2) Với \(x>0;x\ne4;x\ne9\), ta có:
A = \(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{x-4}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\left[\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)
\(=\dfrac{x-3\sqrt{x}-2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-4-2\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x-3}\right)}\)
\(=\dfrac{-x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)
\(=\dfrac{-x}{x-2\sqrt{x}+2}\)
1/ Tính: \(\sqrt[3]{54}-\sqrt[3]{16}\)
2/ so sánh các cặp số sau
a) \(3\sqrt{2}\) và \(2\sqrt{3}\)
b) 4.\(\sqrt[3]{5}\) và 5.\(\sqrt[3]{4}\)
3/ cho biểu thức A= \(_{\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)}\)\(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
a) tìm điều kiện x để A có nghĩa
b) Rút gọn A
2/
a) Ta có:
\(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{9\cdot2}=\sqrt{18}\)
\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{4\cdot3}=\sqrt{12}\)
Mà: \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)
b) Ta có:
\(4\sqrt[3]{5}=\sqrt[3]{4^3\cdot5}=\sqrt[3]{320}\)
\(5\sqrt[3]{4}=\sqrt[3]{5^3\cdot4}=\sqrt[3]{500}\)
Mà: \(320< 500\Rightarrow\sqrt[3]{320}< \sqrt[3]{500}\Rightarrow4\sqrt[3]{5}< 5\sqrt[3]{4}\)
3/
a)ĐKXĐ: \(x\ne1;x\ge0\)
b) \(A=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
\(A=\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\)
\(A=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\)
\(A=1^2-\left(\sqrt{x}\right)^2\)
\(A=1-x\)
1/ \(\sqrt[3]{54}-\sqrt[3]{16}\)
\(=\sqrt[3]{3^3\cdot2}-\sqrt[3]{2^3\cdot2}\)
\(=3\sqrt[2]{3}-2\sqrt[3]{2}\)
\(=\left(3-2\right)\sqrt[3]{2}\)
\(=\sqrt[3]{2}\)