Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Lam Phong
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
21 tháng 2 2020 lúc 10:23

\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\) ( ĐK : \(\frac{6}{7}\le x\le\frac{181}{14}\))

\(\Leftrightarrow\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{\left(7x+7\right)\left(7x-6\right)}=-\left(7x+7\right)-\left(7x-6\right)+182\)

Đặt \(\left\{{}\begin{matrix}\sqrt{7x+7}=a\left(a\ge0\right)\\\sqrt{7x-6}=b\left(b\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow a+b+2ab=-a^2-b^2+182\)

\(\Leftrightarrow\left(a+b\right)^2+\left(a+b\right)-182=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=13\left(N\right)\\a+b=-14\left(L\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{7x+7}+\sqrt{7x-6}=13\)

\(\Leftrightarrow\sqrt{49x^2+7x-42}=84-7x\)

\(\Leftrightarrow49x^2+7x-42=49x^2-1176x+7056\)

\(\Leftrightarrow1183x=7098\)

\(\Leftrightarrow x=6\left(TM\right)\)

Vậy S={6}

Khách vãng lai đã xóa
Kim Trí Ngân
Xem chi tiết
Nguyễn Bá Minh
Xem chi tiết
Nguyễn Tũn
7 tháng 8 2018 lúc 17:11

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

Nguyễn Bá Minh
7 tháng 8 2018 lúc 17:50

( x +1 ) ( x + 4 ) = 5 căn ( x^2 + 5x +28 ) (1) 
= ( x + 1 ) ( x + 4 ) = 5 căn [ (x^2 + 5x + 4) + 24 ] 
= ( x + 1 ) ( x + 4 ) = 5 căn [ ( x + 1 ) ( x + 4 ) + 24 ] 
Đặt a = ( x + 1 ) ( x + 4 ) 
(1) <=> a = 5 căn ( a + 24 ) 
<=> a^2 = 25 ( a + 24 ) 
<=> a^2 - 25a - 600 = 0 
<=> a1 = 40 
a2 = -15 

với a = 40 ta có: 
( x + 1 ) ( x + 4 ) = 40 
<=> x^2 + 5x + 4 = 40 
<=> x^2 + 5x - 36 = 0 
<=> x = 4 và x = - 9 

với a = -15, ta có: 
( x + 1 ) ( x + 4 ) = -15 
<=> x^2 + 5x + 4 = -15 
<=> x^2 + 5x + 19 = 0 
delta < 0 => pt vô nghiệm 

Vậy s = { -9; 4}

Đoàn Thế Nhật
Xem chi tiết
Đặng Minh Triều
10 tháng 5 2016 lúc 21:34

Đặt a=7x+7;b=7x-6 ta có hpt:

\(\begin{cases}a+b+2ab=-a-b+182\\a-b=13\end{cases}\Leftrightarrow\begin{cases}2a+2b+2ab=182\\a=13+b\end{cases}\)

Giải

Đoàn Thế Nhật
Xem chi tiết
Thắng Nguyễn
9 tháng 5 2016 lúc 17:04

tui bấm máy ra x=6

Nguyễn Tuấn
9 tháng 5 2016 lúc 17:32

đặt là ra mà 

Quỳnh Anh Lưu
Xem chi tiết
dia fic
Xem chi tiết
 ๛๖ۣۜMĭη²ƙ⁸࿐
Xem chi tiết
Kudo Shinichi
1 tháng 10 2019 lúc 20:11

\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)

\(ĐK:x\ge5\)

BPT \(\Leftrightarrow x^2-7x+2-2\sqrt{x^2-7x+10}< 0\)

\(\Leftrightarrow t^2-8-2t< 0\left(t=\sqrt{x^2-7x+10}\ge0\right)\)

\(\Leftrightarrow\left(t+2\right)\left(t-4\right)< 0\)

\(\Leftrightarrow-2< t< 4\Leftrightarrow-2< \sqrt{x^2-7x+10}< 4\)

\(\Leftrightarrow\sqrt{x^2-7x+10}< 4\Leftrightarrow x^2-7x-6< 0\)

\(\Leftrightarrow\orbr{\begin{cases}5\le x< \frac{7+\sqrt{73}}{2}\\\frac{7-\sqrt{73}}{2}< x\le2\end{cases}}\)

Chúc bạn học tốt !!!

Nguyen Thi Bich Huong
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 10 2020 lúc 12:09

a/ Giải rồi

b/ ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)

\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)

Pt trở thành:

\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)

\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)

\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)

\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)

\(\Leftrightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
12 tháng 10 2020 lúc 12:14

c/ Vế phải là \(181-4x\) hay \(18-14x\)?

d/ ĐKXĐ: \(x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=t>0\)

\(\Rightarrow t^2=2x+2\sqrt{x^2-16}\)

Pt trở thành:

\(\frac{t}{2}=\frac{t^2}{2}-6\)

\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=4\)

\(\Leftrightarrow2x+2\sqrt{x^2-16}=16\)

\(\Leftrightarrow\sqrt{x^2-16}=8-x\left(x\le8\right)\)

\(\Leftrightarrow x^2-16=64-16x+x^2\)

\(\Rightarrow x=...\)

Nguyễn Việt Lâm
12 tháng 10 2020 lúc 12:17

e/ ĐKXD: \(x>0\)

\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)

\(\Rightarrow t^2=x+\frac{1}{4x}+1\)

Pt trở thành:

\(5t=2\left(t^2-1\right)+4\)

\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)

\(\Leftrightarrow2x-4\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)

\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)

Khách vãng lai đã xóa