Tìm x,y thỏa mãn phưng trình sau: x^2- 4x +y^2 -6y +15
Tìm x, y thỏa mãn p trình sau: x^2-4x+y^2-6y+15=2
\(x^2-4x+y^2-6x+15=2\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6x+9\right)-4-9+15-2=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Lại có :
\(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) \(\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow x=2;y=3\)
Bài 3: Tìm x; y thỏa mãn phương trình sau:
x2 - 4x + y2 - 6y + 15 = 2
\(x^2-4x+y^2-6y+15=2\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-9y+9\right)+2=2\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Vì \(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)
Mà \(\left(x-2\right)^2+\left(y-3\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy (x;y) = (2;3)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Do \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x-2=0\\y-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
đến h vẫn còn ôn thi à
\(x^2-4x+y^2-6y+15=2\)
\(< =>\left(x^2-4x+4\right)+\left(y^2-6y+9\right)=0\)
\(< =>\left(x-2\right)^2+\left(y-3\right)^2=0\)
Do \(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(=>\left(x-2\right)^2+\left(y-3\right)^2\ge0\)
Dấu "=" xảy ra \(< =>\hept{\begin{cases}x=2\\y=3\end{cases}}\)
tìm x,y thoả mãn pt sau: x²-4x+y²-6y+15=2
=>x^2-4x+4+y^2-6y+9=0
=>(x-2)^2+(y-3)^2=0
=>x=2 và y=3
x2 - 4x + y2 - 6y + 15 = 2 ( tìm x,y thỏa mãn điều kiện )
Cần đáp án gấp
\(x^2-4x+y^2-6y+15=2\)
\(\Rightarrow x^2-4x+4+y^2-6y+9+2=2\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
x^2-4x+y^2-6y+15=0
x^2-4x+4+y^2-6y+9+2=2
(x-2)^2+(y-3)^2=0
do x-2)^2>=o, (y-3)^2>= 0( ghi chú : >= là lớn hơn hoặc bằng)
vậy x-2=0 và y-3=0
x=2 và y=3
vậy x=2 và y=3 là nghiệm phương trình
Ttìm cặp số x, y nguyên thỏa mãn 5x^2 +y^2 -2xy+2x-6y+1<0
Tìm cặp số x,y thỏa 5x^2 +2y+y^2 -4x-40=0
Giải hệ phương trình sau:
xy(x-y)=2
9xy(3x-y)+6=26x^3 -2y^3
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
tìm x,y,z thỏa mãn phương trình sau 9x^2+ y^2 + 2z^2 - 18x + 4z - 6y + 20 = 0
9x^2+ y^2 + 2z^2 - 18x + 4z - 6y + 20 = 0
<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0
<=>(3x-3)2+(y-3)2+2.(z2+2z+1)=0
<=>(3x-3)2+(y-3)2+2.(z+1)2=0
<=>3x-3=0 và y-3=0 và z+1=0
<=>x=1 và y=3 và z=-1
Tìm x,y thỏa mãn x^2 +5y^2 -4x -4xy +6y +5 = 0. Tính P=(x-3)^2023 + (y-2)^2023 +(x+y-5)^2023
Ta có:
\(x^2+5y^2-4x-4xy+6y+5=0\\\Rightarrow[(x^2-4xy+4y^2)-(4x-8y)+4]+(y^2-2y+1)=0\\\Rightarrow[(x-2y)^2-4(x-2y)+4]+(y-1)^2=0\\\Rightarrow(x-2y-2)^2+(y-1)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-2y-2\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-2y-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Mà: \(\left(x-2y-2\right)^2+\left(y-1\right)^2=0\)
nên: \(\left\{{}\begin{matrix}x-2y-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2y+2\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot1+2=4\\y=1\end{matrix}\right.\)
Thay \(x=4;y=1\) vào \(P\), ta được:
\(P=\left(4-3\right)^{2023}+\left(1-2\right)^{2023}+\left(4+1-5\right)^{2023}\)
\(=1^{2023}+\left(-1\right)^{2023}+0^{2023}\)
\(=1-1=0\)
Vậy \(P=0\) khi \(x=4;y=1\).
Tìm x,y,x thỏa mãn phương trình sau: 9x2 + y2 + 2z2 -18x + 4z- 6y+20=0
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y-3\right)^2+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=1\\y=3\\z=-1\end{cases}\)