Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Vũ
Xem chi tiết
Nguyễn Thanh Hằng
16 tháng 3 2021 lúc 20:57

\(x^2-4x+y^2-6x+15=2\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6x+9\right)-4-9+15-2=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)

Lại có :

\(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) \(\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow x=2;y=3\)

NSA tươi
Xem chi tiết
Nguyễn Ngọc Huy Toàn
1 tháng 3 2022 lúc 17:47

\(x^2-4x+y^2-6y+15=2\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-9y+9\right)+2=2\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)

Vì \(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\) 

Mà \(\left(x-2\right)^2+\left(y-3\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Vậy (x;y) = (2;3)

Nguyễn Việt Lâm
1 tháng 3 2022 lúc 17:48

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)

Do \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x-2=0\\y-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Võ Việt Anh
Xem chi tiết
Phan Nghĩa
29 tháng 3 2021 lúc 0:57

đến h vẫn còn ôn thi à 

\(x^2-4x+y^2-6y+15=2\)

\(< =>\left(x^2-4x+4\right)+\left(y^2-6y+9\right)=0\)

\(< =>\left(x-2\right)^2+\left(y-3\right)^2=0\)

Do \(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)

\(=>\left(x-2\right)^2+\left(y-3\right)^2\ge0\)

Dấu "=" xảy ra \(< =>\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Khách vãng lai đã xóa
Phạm Anh Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2023 lúc 10:47

=>x^2-4x+4+y^2-6y+9=0

=>(x-2)^2+(y-3)^2=0

=>x=2 và y=3

Thành Vũ
Xem chi tiết
Girl
8 tháng 3 2019 lúc 21:18

\(x^2-4x+y^2-6y+15=2\)

\(\Rightarrow x^2-4x+4+y^2-6y+9+2=2\)

\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Cố Tử Thần
8 tháng 3 2019 lúc 21:19

x^2-4x+y^2-6y+15=0

x^2-4x+4+y^2-6y+9+2=2

(x-2)^2+(y-3)^2=0

do x-2)^2>=o, (y-3)^2>= 0( ghi chú : >= là lớn hơn hoặc bằng)

vậy x-2=0 và y-3=0

x=2 và y=3

vậy x=2 và y=3 là nghiệm phương trình

Nguyễn Duy Thịnh
8 tháng 3 2019 lúc 21:36

x=2; y=3

Quang Huy Nguyen
Xem chi tiết
Bùi Minh Châu
18 tháng 2 lúc 17:00

5x2+2y+y2-4x-40=0

△=(-4)2-4.5.(2y+y2-40)

△=16-40y-20y2+800

△=-(784+40y+20y2)

△=-(32y+8y+16y2+4y2+16+4+764)

△=-[(4y+4)2+(2y+2)2+764]<0

=>PHƯƠNG TRÌNH VÔ NGHIỆM.

Phạm Thị Phương Thảo
Xem chi tiết
Minh Triều
29 tháng 7 2015 lúc 15:57

 

9x^2+ y^2 + 2z^2 - 18x + 4z - 6y + 20 = 0

<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0

<=>(3x-3)2+(y-3)2+2.(z2+2z+1)=0

<=>(3x-3)2+(y-3)2+2.(z+1)2=0

<=>3x-3=0 và y-3=0 và z+1=0

<=>x=1 và y=3 và z=-1

 

Nhã Phương
Xem chi tiết
Toru
22 tháng 12 2023 lúc 20:41

Ta có:

\(x^2+5y^2-4x-4xy+6y+5=0\\\Rightarrow[(x^2-4xy+4y^2)-(4x-8y)+4]+(y^2-2y+1)=0\\\Rightarrow[(x-2y)^2-4(x-2y)+4]+(y-1)^2=0\\\Rightarrow(x-2y-2)^2+(y-1)^2=0\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x-2y-2\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-2y-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

Mà: \(\left(x-2y-2\right)^2+\left(y-1\right)^2=0\)

nên: \(\left\{{}\begin{matrix}x-2y-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2y+2\\y=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot1+2=4\\y=1\end{matrix}\right.\)

Thay \(x=4;y=1\) vào \(P\), ta được:

\(P=\left(4-3\right)^{2023}+\left(1-2\right)^{2023}+\left(4+1-5\right)^{2023}\)

\(=1^{2023}+\left(-1\right)^{2023}+0^{2023}\)

\(=1-1=0\)

Vậy \(P=0\) khi \(x=4;y=1\).

Huyền Trần
Xem chi tiết
Trần Việt Linh
14 tháng 12 2016 lúc 19:57

\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)

\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y-3\right)^2+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(\Leftrightarrow\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=1\\y=3\\z=-1\end{cases}\)