1) Làm phép chia:
a) (x^4 + 2x^2y^2 + y^4) : ( x^2+y^2)
b) ( 49x^2 + 81y^2) : (7x + 9x)
Phân tích đa thức thành nhân tử :
1) 0.125x^3 - 0,008 y^3
2) 16x^2 - 49 - 8xy + y^2
3) 49x^2 - 81y^2 - 14x + 1
4) 4x^2 - 9x^2 + 4xy + 6ab + y^2 - b^2
5) x^6 - y^6
1.Phân tích các đa thức sau thành nhân tử :
a, x^2-7x+5;
b, x^2-9x-10;
c, 2x^2-3x-5;
d, 3x^2+2x-5;
e, 8x^3+12x^2y+6xy^2+y^3;
2. Phân tích các đa thwusc sau thành nhân tử :
a, a^3-a^2x-ay+xy;
b, xy(x+y)+yz(y+z)+xz(x+z)+2xyz
; c, x^4+2x^3+x; d, 4x^4+81y^4
mình cần gấp nhé mọi người 13 giờ mk đi học rồi
Bài 1:
b: =x^2-10x+x-10
=(x-10)(x+1)
c: \(=2x^2-5x+2x-5=\left(2x-5\right)\left(x+1\right)\)
d: \(=3x^2+5x-3x-5=\left(3x+5\right)\left(x-1\right)\)
e: \(=\left(2x+y\right)^3\)
Bài 1 làm tính nhân
2x.(x^2-7x-3)
(-2x^3+y^2-7xy).4xy^2
(-5x^3).(2x^2+3x-5)
(2x^2-xy+y^2).(-3x^3)
(x^2-2x+3).(x-4)
(2x^3-3x-1).(5x+2)
Bài 2 Thực hiện phép tính
A,(2x+3y^2)
B, (5x-y)^2
C, (2x+y^2)^3
D, ( 3x^2-2y)^3
\(2x\left(x^2-7x-3\right)=2x^3-14x-6x\)
\(4xy^2\left(-2x^3+y^2-7xy\right)=-8x^4y^2+4xy^5-28x^2y^3\)
thực hiện phép chia
a (4x^5-8x^3):(-2x^3)
b(9x^3-12x^2 + 3x ) : (-3x)
c (xy^2 + 4x^2y^3 -3x^2y^4):(-1/2x^2y^3)
d[2(x-y)^3-7(y-x)^2 - (y-x)] : (x-y)
e[(x^3 - y) ^5 -2(x-y)^4 + 3(x-y)^2] :[5(x-y)^2]
Dùng hằng đẳng thức để làm tính chia:
a) (x4 + 2x2y2 + y4) : (x2 + y2)
b) (49x2 - 81y2) : (7x + 9y)
c) (x3 + 3x2y + 3xy2 + y3) : (x + y)
d) (x3 - 3x2y + 3xy2 - y3) : (x2 - 2xy + y2)
e) (8x3 + 1) : (2x + 10
f) (8x3 - 1) : (4x2 + 2x + 1)
a) Ta có: \(\left(x^4+2x^2y^2+y^4\right):\left(x^2+y^2\right)\)
\(=\left(x^2+y^2\right)^2:\left(x^2+y^2\right)\)
\(=x^2+y^2\)
b) Ta có: \(\left(49x^2-81y^2\right):\left(7x+9y\right)\)
\(=\frac{\left(7x+9y\right)\left(7x-9y\right)}{7x+9y}\)
\(=7x-9y\)
c) Ta có: \(\left(x^3+3x^2y+3xy^2+y^3\right):\left(x+y\right)\)
\(=\left(x+y\right)^3:\left(x+y\right)\)
\(=\left(x+y\right)^2=x^2+2xy+y^2\)
d) Ta có: \(\left(x^3-3x^2y+3xy^2-y^3\right):\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3:\left(x-y\right)^2\)
\(=\left(x-y\right)\)
e)Sửa đề: \(\left(8x^3+1\right):\left(2x+1\right)\)
Ta có: \(\left(8x^3+1\right):\left(2x+1\right)\)
\(=\frac{\left(2x+1\right)\left(4x^2-2x+1\right)}{2x+1}\)
\(=4x^2-2x+1\)
f) Ta có: \(\left(8x^3-1\right):\left(4x^2+2x+1\right)\)
\(=\frac{\left(2x-1\right)\left(4x^2+2x+1\right)}{4x^2+2x+1}\)
\(=2x-1\)
a, (x4 + 2x2y2 + y4) : (x2 + y2)
= (x2 + y2)2 : (x2 + y2)
= x2 + y2
b, (49x2 - 81y2) : (7x + 9y)
= (7x - 9y)(7x + 9y) : (7x + 9y)
= 7x - 9y
c, (x3 + 3x2y + 3xy2 + y3) : (x + y)
= (x + y)3 : (x + y)
= (x + y)2
d, (x3 - 3x2y + 3xy2 - y3) : (x2 - 2xy + y2)
= (x - y)3 : (x - y)2
= x - y
Phần e thiếu thì phải
f, (8x3 - 1) : (4x2 + 2x + 1)
= (2x - 1)(4x2 + 2x + 1) : (4x2 + 2x + 1)
= 2x - 1
Chúc bn học tốt!
BT10: Thực hiện phép tính
\(a,\dfrac{4}{5}y^2x^5-x^3.x^2y^2\)
\(b,-xy^3-\dfrac{2}{7}y^2.xy\)
\(c,\dfrac{5}{6}xy^2z-\dfrac{1}{4}xyz.y\)
\(d,15x^4+7x^4-20x^2.x^2\)
\(e,\dfrac{1}{2}x^5y-\dfrac{3}{4}x^5y+xy.x^4\)
\(f,13x^2y^5-2x^2y^5+x^6\)
a: =-1/5x^5y^2
b: =-9/7xy^3
c: =7/12xy^2z
d: =2x^4
e: =3/4x^5y
f: =11x^2y^5+x^6
bài 1: phân tích đa thức thanh nhân tử
1) x2 - 2x - 4y2 - 4y 2) x4 + 2x3 - 4x - 4 3) x3 +2x2y -x - 2y
4) 3x2 - 3y2 - 2(x - y)2 5) x3 - 4x2 -9x + 36 6) x2 - y2 - 2x - 2y
7) (3x-1)2 - 16 8) (5x - 4)2 - 49x2 9) (2x +5) - (x-9)2
a) x2 - 2x - 4y2 - 4y
= (x2 - 4y2) - (2x + 4y)
= (x + 2y)(x - 2y) - 2(x + 2y)
= (x + 2y)(x - 2y - 2)
= (x + 2y)[x - 2(y + 1)]
b) x4 + 2x3 - 4x - 4
= (x4 - 4) + ( 2x3 - 4x)
= (x2 - 2)(x2 + 2) + 2x(x2 - 2)
= (x2 - 2)(x2 + 2 + 2x)
c) x3 + 2x2y - x -2y
= (x3 - x) + (2x2y - 2y)
= x(x2 - 1) + 2y(x2 - 1)
= (x + 2y)(x2 - 1)
Tìm GTNN của các biểu thức sau:
1,P=9x^2-7x+2
2,P=x^4+4(y^2+x-xy-2y+1)+6
3,P=4x(x+y+1)+y(y+2)+5
4,P=x^2+3y(3y-2x-2)+2(x+4)+3
Trả lời:
1, \(P=9x^2-7x+2=9\left(x^2-\frac{7}{9}x+\frac{2}{9}\right)=9\left[\left(x^2-2x\frac{7}{18}+\frac{49}{324}\right)+\frac{23}{324}\right]\)
\(=9\left[\left(x-\frac{7}{18}\right)^2+\frac{23}{324}\right]=9\left(x-\frac{7}{18}\right)^2+\frac{23}{36}\)
Ta có: \(9\left(x-\frac{7}{18}\right)^2\ge0\forall x\)
\(\Leftrightarrow9\left(x-\frac{7}{18}\right)^2+\frac{23}{26}\ge\frac{23}{26}\forall x\)
Dấu "=" xảy ra khi \(x-\frac{7}{18}=0\Leftrightarrow x=\frac{7}{18}\)
Vậy GTNN của P = 23/36 khi x = 7/18
Bài 1.khai triển HĐT
a,(3x-4)^2 b,(1+4x)^2 c,(2x+3)^3
d,(5-2x)^3 e,49x^2-25 f,1/25-81y^2
Bài 2.Tìm x biết:Viết đầy đủ
a,(x-5)^2-(x+7)(x-7)=8 b,(2x+5)^2-4(x+1)(x-1)=10
Bài 3.Tìm GTLN,GTNN của các biểu thức sau
a,A=x^2-6x+19 b,B=-x^2+8x-20
c,C=4x^2+12x+100 d,D=25+4x-x^2
Bài 1.
\(a, (3x-4)^2\)
\(=\left(3x\right)^2-2\cdot3x\cdot4+4^2\)
\(=9x^2-24x+16\)
\(b,\left(1+4x\right)^2\)
\(=1^2+2\cdot1\cdot4x+\left(4x\right)^2\)
\(=16x^2+8x+1\)
\(c,\left(2x+3\right)^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)
\(=8x^3+36x^2+54x+27\)
\(d,\left(5-2x\right)^3\)
\(=5^3-3\cdot5^2\cdot2x+3\cdot5\cdot\left(2x\right)^2-\left(2x\right)^3\)
\(=125-150x+60x^2-8x^3\)
\(e,49x^2-25\)
\(=\left(7x\right)^2-5^2\)
\(=\left(7x-5\right)\left(7x+5\right)\)
\(f,\dfrac{1}{25}-81y^2\)
\(=\left(\dfrac{1}{5}\right)^2-\left(9y\right)^2\)
\(=\left(\dfrac{1}{5}-9y\right)\left(\dfrac{1}{5}+9y\right)\)
Bài 2.
\(a,\left(x-5\right)^2-\left(x+7\right)\left(x-7\right)=8\)
\(\Rightarrow x^2-2\cdot x\cdot5+5^2-\left(x^2-7^2\right)=8\)
\(\Rightarrow x^2-10x+25-\left(x^2-49\right)=8\)
\(\Rightarrow x^2-10x+25-x^2+49=8\)
\(\Rightarrow\left(x^2-x^2\right)-10x=8-25-49\)
\(\Rightarrow-10x=-66\)
\(\Rightarrow x=\dfrac{33}{5}\)
\(b,\left(2x+5\right)^2-4\left(x+1\right)\left(x-1\right)=10\)
\(\Rightarrow\left(2x\right)^2+2\cdot2x\cdot5+5^2-4\left(x^2-1^2\right)=10\)
\(\Rightarrow4x^2+20x+25-4x^2+4=10\)
\(\Rightarrow\left(4x^2-4x^2\right)+20x=10-25-4\)
\(\Rightarrow20x=-19\)
\(\Rightarrow x=\dfrac{-19}{20}\)
#\(Toru\)
Bài 1
a) (3x - 4)²
= (3x)² - 2.3x.4 + 4²
= 9x² - 24x + 16
b) (1 + 4x)²
= 1² + 2.1.4x + (4x)²
= 1 + 8x + 16x²
c) (2x + 3)³
= (2x)³ + 3.(2x)².3 + 3.2x.3² + 3³
= 8x³ + 36x² + 54x + 27
d) (5 - 2x)³
= 5³ - 3.5².2x + 3.5.(2x)² - (2x)³
= 125 - 150x + 60x² - 8x³
e) 49x² - 25
= (7x)² - 5²
= (7x - 5)(7x + 5)
f) 1/25 - 81y²
= (1/5)² - (9y)²
= (1/5 - 9y)(1/5 + 9y)
Bài 3.
\(a,A=x^2-6x+19\)
\(=x^2-6x+9+10\)
\(=\left(x^2-2\cdot x\cdot3+3^2\right)+10\)
\(=\left(x-3\right)^2+10\)
Ta thấy: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+10\ge10\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: \(Min_A=10\) khi \(x=3\)
\(b,B=-x^2+8x-20\)
\(=-x^2+8x-16-4\)
\(=-\left(x^2-8x+16\right)-4\)
\(=-\left(x^2-2\cdot x\cdot4+4^2\right)-4\)
\(=-\left(x-4\right)^2-4\)
Ta thấy: \(\left(x-4\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-4\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-4\right)^2-4\le-4\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy \(Max_B=-4\) khi \(x=4\)
\(c,C=4x^2+12x+100\)
\(=4x^2+12x+9+91\)
\(=\left[\left(2x\right)^2+2\cdot2x\cdot3+3^2\right]+91\)
\(=\left(2x+3\right)^2+91\)
Ta thấy: \(\left(2x+3\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+3\right)^2+91\ge91\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow2x+3=0\Leftrightarrow x=-\dfrac{3}{2}\)
Vậy \(Min_C=91\) khi \(x=\dfrac{-3}{2}\)
\(d,D=25+4x-x^2\)
\(=-x^2+4x-4+29\)
\(=-\left(x^2-2\cdot x\cdot2+2^2\right)+29\)
\(=-\left(x-2\right)^2+29\)
Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2+29\le29\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy \(Max_D=29\) khi \(x=2\)
#\(Toru\)