Tìm x \(\in\)N:
x:2+10=22
\(A=\left\{x\in N:x< 10\right\}\)
liệt kê các phần tử của tập hợp A
A = { 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ;9 }
lập mđề phủ định của mệnh đề sau và xét tính đúng sai của mệnh đề đó
P:"\(\exists x\in N:x^2-x-2=0\) "
\(\overline{P}:"\forall x\in N:x^2-x-2\ne0"\)
Mệnh đề \(\overline{P}\) sai vì \(x=2\) thì \(x^2-x-2=0\)
Cho x,y số thực thỏa mãn:x2 +2xy+7(x+y)+2y2+10=0
Tìm Min và Max: S=x+y+3
Ta có: \(x^2+2xy+7(x+y)+2y^2+10=0\)
<=> \((x^2+2xy+y^2)+7(x+y)+y^2+10=0\)
<=>(1)
Đặt t=x+y
=>(1)<=>\(y^2+t^2+7t+10=0
\)
Phương trình có nghiệm khi \(\Delta\)'\(\ge\)0
<=>\(t^2+7t+10=0
\) \(\le\)0
<=> -5\(\le\)t\(\le\)-2
=>Max S=1 khi t=-2<=>y=0;x=-2
Min S=-2 khi t=-5<=>y=0;x=-5
bài 1. tìm n để đa thức x4-x3+6x2-x+n:x2-x+5
bài 2. thực hiện phép chia (125x3-1):(25x2+5x+1)
tìm cặp x;y nguyên thỏa mãn:x^2+y^2=xy+x+y
\(x^2+y^2=xy+x+y\Leftrightarrow2x^2+2y^2=2xy+2x+2y\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=2....\)
Cho \(E=\left\{x\in N:x\le8\right\};A=\left\{1;3;5;7\right\};B=\left\{1;2;3;6\right\}\)
Chứng minh \(C^{A\cup B}_E\subset C_E^{A\cap B}\)
E={0;1;2;3;4;5;6;7;8}
\(C_E^{A\cup B}=E\backslash\left(A\cup B\right)=E\backslash\left\{1;3;5;7;2;6\right\}=\left\{0;4\right\}\)
\(C_E^{A\cap B}=E\backslash\left\{1;3\right\}=\left\{0;2;4;5;6;7;8\right\}\)
=>\(C_E^{A\cup B}\subset C_E^{A\cap B}\)
tìm tất cả các số nguyên x thỏa mãn:x2+x-p=0 với p là số nguyên tố
\(x^2+x-p=0\\ \Leftrightarrow x\left(x+1\right)=p\)
\(\Rightarrow p⋮2\)
Mà p là SNT \(\Rightarrow p=2\)
\(\Rightarrow x^2+x=2\\ \Rightarrow x^2+x-2=0\\ \Leftrightarrow\left(x^2-1\right)+\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
x2 + x - p = 0
=> x. ( x + 1 ) = p
Suy ra x và x + 1 là các ước của p
Mà x và x + 1 là 2 số nguyên liên tiếp và p là số nguyên tố nên
x = 1 hoặc x + 1 = 1
+) Với x = 1 thì x + 1 = 2
=> p = 1 . 2 = 2 ( thỏa mãn )
+) Với x + 1 = 1 thì x = 0
=> p = 0 . 1 = 0 ( không thỏa mãn )
Vậy x = 1
Tìm số tự nhiên n để mỗi phép chia sau là phép chia hết :
a) \(x^4:x^n\)
b) \(x^n:x^3\)
c) \(5x^ny^3:4x^2y^2\)
d) \(x^ny^{n+1}:x^2y^5\)
1, cho 3 số thực dương x,y,z thỏa mãn:x+y+z=9
Tìm GTNN của biểu thức: S=\(\frac{x^3}{x^2+xy+y^2}+\frac{y^3}{y^2+yz+z^2}+\frac{z^3}{z^2+zx+x^2}\)
Ta sẽ chứng minh: \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\) với a;b dương
Thật vậy, BĐT tương đương:
\(3a^3\ge\left(2a-b\right)\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Áp dụng: \(\Rightarrow S\ge\frac{2x-y}{3}+\frac{2y-z}{3}+\frac{2z-x}{3}=\frac{x+y+z}{3}=3\)
\(S_{min}=3\) khi \(x=y=z=3\)