Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lý Ngọc Mai
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 20:59

\(a,=\dfrac{x^3-\left(x-1\right)\left(x^2+x+1\right)}{1-x}=\dfrac{x^3-x^3+1}{1-x}=\dfrac{1}{1-x}\\ b,=\dfrac{2x+x^2+3x+2+2-x}{\left(x+2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x+2\right)^2}=1\)

Hà Trí Kiên
Xem chi tiết
Yến Nguyễn
4 tháng 7 2023 lúc 20:42

Để giải phương trình, ta sẽ thực hiện các bước sau: Bước 1: Giải các phép tính trong phương trình. 32x^(-1) + 2.9x^(-1) = 405(13)^(-1) + 5.(13)^2 + 1 = 1493(31)^(-1) + 5.(31)^2 + 1 = 9314(35)^(-1) Bước 2: Rút gọn các số hạng. 32x^(-1) + 2.9x^(-1) = 405/13 + 5.(13)^2 + 1 = 1493/31 + 5.(31)^2 + 1 = 9314/35 Bước 3: Đưa các số hạng về cùng mẫu số. 32x^(-1) + 2.9x^(-1) = (405/13).(31/31) + 5.(13)^2 + 1 = (1493/31).(13/13) + 5.(31)^2 + 1 = 9314/35 Bước 4: Tính toán các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/13.(31) + 5.(13)^2 + 1 = 1493.(13)/31.(13) + 5.(31)^2 + 1 = 9314/35 Bước 5: Tính tổng các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/403 + 5.(13)^2 + 1 = 1493.(13)/403 + 5.(31)^2 + 1 = 9314/35 Bước 6: Đưa phương trình về dạng chuẩn. 32x^(-1) + 2.9x^(-1) - 9314/35 = 0 Bước 7: Giải phương trình. Để giải phương trình này, ta cần biến đổi nó về dạng tương đương. Nhân cả hai vế của phương trình với 35 để loại bỏ mẫu số. 35.(32x^(-1) + 2.9x^(-1) - 9314/35) = 0 1120x^(-1) + 101.5x^(-1) - 9314 = 0 Bước 8: Tìm giá trị của x. Để tìm giá trị của x, ta cần giải phương trình này. Tuy nhiên, phương trình này không thể giải được vì x có mũ là -1.

Hoàng Kiều Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 4 2022 lúc 7:06

\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)

\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)

Khuất đại quân
Xem chi tiết
Sơn Mai Thanh Hoàng
25 tháng 3 2022 lúc 20:45

\(x=\dfrac{4}{27}-\dfrac{2}{3}\)

\(x=-\dfrac{14}{27}\)

TV Cuber
25 tháng 3 2022 lúc 20:45

\(x=\dfrac{4}{27}-\dfrac{2}{3}\)

\(x=-\dfrac{14}{27}\)

Ngô Nhân
25 tháng 3 2022 lúc 20:46

x=−1427

Adu Darkwa
Xem chi tiết
Trần Minh Hoàng
26 tháng 5 2021 lúc 19:22

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

Hà Trí Kiên
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 12 2021 lúc 14:40

ĐKXĐ: m<>-1

Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\left(m-2\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-m-2\right)\)

\(=4m^2-8m+4-4m^2+4m-8\)

\(=-4m-4\)

Để phương trình có hai nghiệm phân biệt thì -4m-4>0

hay m<-1

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1\cdot x_2=\dfrac{m-2}{m+1}\\x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\end{matrix}\right.\)

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4x_1x_2\)

\(\Leftrightarrow\left(\dfrac{2m-2}{m+1}\right)^2-6\cdot\dfrac{m-2}{m+1}=0\)

\(\Leftrightarrow\left(2m-2\right)^2-6\left(m^2-m-2\right)=0\)

\(\Leftrightarrow4m^2-8m+4-6m^2+6m+12=0\)

\(\Leftrightarrow-2m^2-2m+16=0\)

\(\Leftrightarrow m^2-m-8=0\)

Đến đây bạn tự giải nhé

Nguyễn Hoàng Minh
5 tháng 12 2021 lúc 14:43

PT có 2 nghiệm \(\Leftrightarrow\Delta=4\left(m-1\right)^2-4\left(m-2\right)\left(m+1\right)\ge0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m+8\ge0\\ \Leftrightarrow12-4m\ge0\\ \Leftrightarrow m\le3\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\\x_1x_2=\dfrac{m-2}{m+1}\end{matrix}\right.\)

\(\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}=-4\\ \Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=-4\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=-4x_1x_2\\ \Leftrightarrow\left(x_1+x_2\right)^2=-2x_1x_2\\ \Leftrightarrow\dfrac{4\left(m-1\right)^2}{\left(m+1\right)^2}=\dfrac{4-2m}{m+1}\\ \Leftrightarrow4\left(m-1\right)^2=\left(4-2m\right)^2\\ \Leftrightarrow4m^2-8m+4=16-16m+4m^2\\ \Leftrightarrow8m=12\Leftrightarrow m=\dfrac{3}{2}\left(tm\right)\)

Lê Ngọc Linh
Xem chi tiết
Tăng Ngọc Đạt
17 tháng 9 2023 lúc 8:43

\(\left(\dfrac{1}{2^2}-1\right)\times\left(\dfrac{1}{3^2-1}\right)\times\left(\dfrac{1}{4^2}-1\right)\times...\times\left(\dfrac{1}{100^2}-1\right)\)

\(=\dfrac{3}{2^2}\times\dfrac{8}{3^2}\times\dfrac{15}{4^2}\times...\times\dfrac{100^2-1}{100^2}\)

\(=\dfrac{1\times3}{2\times2}\times\dfrac{2\times4}{3\times3}\times\dfrac{3\times5}{4\times4}\times...\times\dfrac{99\times101}{100\times100}\)

\(=\dfrac{1\times2\times3\times...\times99}{2\times3\times4\times...\times100}\times\dfrac{3\times4\times5\times...\times101}{2\times3\times4\times...\times100}\)

\(=\dfrac{1}{100}\times\dfrac{101}{2}\)

\(=\dfrac{101}{200}\)

 

Nguyễn Đăng Nhân
17 tháng 9 2023 lúc 9:01

\(\left(\dfrac{1}{2^2}-1\right)\cdot\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\dfrac{-3}{4}\cdot\dfrac{-8}{3}\cdot...\cdot\dfrac{-9999}{10000}\)

\(=\dfrac{1\cdot\left(-3\right)}{2\cdot2}\cdot\dfrac{2\cdot\left(-4\right)}{3\cdot3}\cdot...\cdot\dfrac{99\cdot\left(-101\right)}{100\cdot100}\)

\(=\dfrac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\cdot\dfrac{\left(-3\right)\cdot\left(-4\right)\cdot...\cdot\left(-101\right)}{2\cdot3\cdot4\cdot...\cdot100}\)

Ở tử số phân số bên phải có số thừa số là: \(101-3+1=99\)

99 là số lẻ nên tử số vế phải sẽ cho ra số âm.

\(=\dfrac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\cdot\dfrac{3\cdot4\cdot5\cdot...\cdot\left(-101\right)}{2\cdot3\cdot4\cdot...\cdot100}\)

\(=\dfrac{1\cdot\left(-101\right)}{100\cdot2}\)

\(=\dfrac{-101}{200}\)

Nguyễn Đăng Nhân
17 tháng 9 2023 lúc 9:03

Ở mỗi thừa số trong bài luôn cho ra số âm chứ làm vậy là sai rồi Ngọc Đạt.

an hạ
Xem chi tiết
Bảo Huy
21 tháng 7 2021 lúc 15:37

.