chứng minh các biểu thức sau luôn dương:
a) \(x^2\)- 5x +11
b) \(3\text{x}^2\)+ 5x + 9
Bài 1: Chứng minh các biểu thức sau luôn dương với mọi x:
a) 9x2 - 6x + 11
b) 3x2 - 12x + 81
c) 5x2 - 5x + 4
d) 2x2 - 2x + 9
a) \(9x^2-6x+11=\left(3x\right)^2-2.3x+1+10=\left(3x-1\right)^2+10>0\forall x\)
b) \(3x^2-12x+81=3.\left(x^2-4x+9\right)=3.\left(x-2\right)^2+15>0\forall x\)
c) \(5x^2-5x+4=5.\left(x^2-x+\dfrac{4}{5}\right)=5.\left(x^2-x+\dfrac{1}{4}+\dfrac{11}{20}\right)=5.\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall x\)
d) \(2x^2-2x+9=2.\left(x^2-x+\dfrac{9}{2}\right)=2.\left(x-\dfrac{1}{2}\right)^2+\dfrac{17}{2}>0\forall x\)
a) = (3x-1)^2+10
Do (3x-1)^2>=0 với mọi x
--> (3x-1)^2+10>0 với mọi x
a) \(9x^2-6x+11=\left(3x-1\right)^2+10\ge10>0\)
b) \(3x^2-12x+81=3\left(x-2\right)^2+69\ge69>0\)
c) \(5x^2-5x+4=5\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)
d) \(2x^2-2x+9=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{17}{2}\ge\dfrac{17}{2}>0\)
chứng minh rằng các biểu thức sau luôn có giá trị dương:
A=x^2-4x+18 B=x^2-x+2 C=x^2+2y^2-2xy-2y+15
Phần C hơi khó không làm cx đc :>
`A=x^2 -4x+18`
`=x^2 -4x+4+14`
`=(x-2)^2 +14`
Có `(x-2)^2 >=0 AAx`
`=> (x-2)^2 +14>= 14>0 AAx`
Vậy ....
`B=x^2 -x+2`
`=x^2 -x+1/4+7/4`
`=(x-1/2)^2 +7/4`
có `(x-1/2)^2 >=0 AAx`
`=> (x-1/2)^2 +7/4>=7/4>0 AAx`
Vậy ...........
`C=x^2 +2y^2 -2xy-2y+15`
`=x^2 -2xy+y^2 +y^2 -2y+1+14`
`=(x-y)^2 +(y-1)^2 +14`
Có `(x-y)^2 >=0 AAx,y` ; `(y-1)^2 >=0 AAy`
`=>(x-y)^2 +(y-1)^2 +14 >=14>0 AAx;y`
Vậy
Chứng minh các biểu thức sau luôn nhận giá trị dương
A(x,y) = x^2 - 2xy + y^2 + 4x^2 - 4xy + 3
B(x) = 3x^2 - 5x + 6
\(A\left(x,y\right)=x^2-2xy+y^2+4x^2-4xy+3\)
\(A\left(x,y\right)=5x^2-6xy+y^2+3\)
\(A\left(x,y\right)=2x^2+3x^2-6xy+y^2+3\)
\(A\left(x,y\right)=2x^2+\left(3x-y\right)^2+3\)
Ta thấy: \(2x^2\ge0\forall x\)
\(\left(3x-y\right)^2\ge0\forall x,y\)
\(\Rightarrow2x^2+\left(3x-y\right)^2+3\ge0\forall x,y\)
KL: Vậy biểu thức A luôn nhận giá trị dương.
\(B\left(x\right)=3x^2-5x+6\)
\(B\left(x\right)=3x^2-5x+\frac{5}{6}+\frac{31}{6}\)
\(B\left(x\right)=3x^2-5x+\left(\frac{5}{6}\right)^2+\frac{5}{36}+\frac{31}{6}\)
\(B\left(x\right)=\left(3x-\frac{5}{6}\right)^2+\frac{5}{36}+\frac{31}{6}\)
Ta thấy: \(\left(3x-\frac{5}{6}\right)^2\ge0\forall x\)
\(\Rightarrow\left(3x-\frac{5}{6}\right)^2+\frac{5}{36}+\frac{31}{6}\ge0\forall x\)
vậy biểu thức B luôn nhận giá trị dương.
Chứng minh các biểu thức sau đây luôn luôn dương với mọi x , y
A=(x - 3)(x -5) + 2
B = x2 - 5x + 7
C = x2 - xy + y2
A=(x-3)(x-5)+2=x^2-5x-3x+15+2=x^2-8x+17=x^2-8x+16+1=(x-4)^2+1>0
B=x^2-5x+7=x^2-5/2*2x+(5/2)^2-(5/2)^2+7=(x-5/2)^2+3/4>0
C=x^2-xy+y^2=x^2-1/2*2xy+1/4y^2-1/4y^2+y^2=(x-1/2y)^2+3/4y^2>0
A=(x-3)(x-5)+2
=x2-8x+15+2
=x2-8x+16+1
=(x-4)2+1
vì (x-4)2 lớn hơn hoặc = 0 nên (x-4)2+1 dương
chứng minh biểu thức luôn âm
a)A=-2x^2+5x-4
b)B=x^2+5x+7
c)C=x^2-20x+101
a: A=-2(x^2-5/2x+2)
=-2(x^2-2*x*5/4+25/16+7/16)
=-2(x-5/4)^2-7/8<=-7/8<0 với mọi x
b: B=x^2+5x+25/4+3/4
=(x+5/2)^2+3/4>=3/4>0
=>B luôn dương với mọi x
c: C=x^2-20x+100+1
=(x-10)^2+1>=1>0 với mọi x
=>C luôn dương với mọi x
Chứng minh rằng các biểu thức sau luôn nhận giá trị dương với mọi giá trị của biến.
a) x2 - 5x +10
b) 2x2 + 8x +15
c) (x-1).(x-2) + 5
d) (x+5).(x-3) + 20
Mọi người giúp mình với :<
a: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
b: \(2x^2+8x+15\)
\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2+7>0\forall x\)
Cho biểu thức M = (2x-3)^2-x(3-x)+5x-4x^2+17
a)rút gọn biểu thức M
b)chứng minh giá trị biểu thức M luôn giá trị dương với mọi x
`#3107.\text {DN}`
a)
\((2x-3)^2-x(3-x)+5x-4x^2+17\)
`= 4x^2 - 12x + 9 - 3x + x^2 + 5x - 4x^2 + 17`
`= x^2 - 10x + 26`
b)
`M = x^2 - 10x + 26`
`= [(x)^2 - 2*x*5 + 5^2] + 1`
`= (x - 5)^2 + 1`
Vì `(x - 5)^2 \ge 0` `AA` `x => (x - 5)^2 + 1 \ge 1` `AA` `x`
Vậy, giá trị biểu thức M luôn có giá trị dương với mọi x.
Chứng minh các biểu thức sau không phụ thuộc vào biến
A=(x-5)(x²+5x+25)-x²+2
B=(2x+3)(4x²-6x-9)-8x(x²+2)+16x+5
A = ( x - 5 )( x2 + 5x + 25 ) - x3 + 2 ( đã sửa )
= x3 - 53 - x3 + 2
= x3 - 125 - x3 + 2
= -123 ( không phụ thuộc vào biến )
=> đpcm
B = ( 2x + 3 )( 4x2 - 6x + 9 ) - 8x( x2 + 2 ) + 16x + 5
= ( 2x )3 + 33 - 8x3 - 16x + 16x + 5
= 8x3 + 27 - 8x3 - 16x + 16x + 5
= 27 + 5 = 32 ( không phụ thuộc vào biến )
=> đpcm
\(A=\left(x-5\right)\left(x^2+5x+25\right)-x^3+2\)
\(=x^3-125-x^3+2\)
\(=-123\left(đpcm\right)\)
\(B=\left(2x+3\right)\left(4x^2-6x+9\right)-8x\left(x^2+2\right)+16x+5\)
\(=8x^3+27-8x^3-16x+16x+5\)
\(=32\left(đpcm\right)\)
chứng minh các biểu thưc sau luôn dương với mọi giá trị của x
x^2-x+1
x^2+5x+8
3x^2+6x+3
x^2-x+1/4+3/4
=[x-1/2]^2+3/4>0
Vay....
2 câu kia tương tự nha