Tìm nghiệm nguyên dương của phương trình:
\(5\left(x+y+z+t\right)+15=2xyzt\)
Tìm nghiệm nguyên dương của phương trình : xyz = x + y + z
Tìm nghiệm nguyên của phương trình : x+y+z=xyz
+Xét \(x=y=z=0\)
+ Xét trong x;y;z có 1 số bằng 0
+ Xét \(x;y;z\ne0\)
Giả sử \(0< x\le y\le z\)
\(x+y+z=xyz\)
\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\le\frac{3}{x^2}\)
\(\Rightarrow x^2\le3\)
\(\Rightarrow x=1\)
Thay x=1 ta được:
\(\frac{1}{y}+\frac{1}{z}+\frac{1}{yz}\le\frac{3}{y}\)
\(\Rightarrow y\le3\)
\(\Rightarrow y\in\left\{1;2;3\right\}\)
Bạn tự giải tiếp nhé
Giả sử 1<=x<=y<=z
=> xyz<=x+y+z
=>xyz<=z+z+z
=>xyz<=3z
=>xy\(\in\){1;2;3}
+)xy=1 => x=y=1 =>1+1+z=z (vô lí)
+) xy=2 => (x;y)=(1;2) ; (2;1)
Mà x<=y
=>(x;y)=(1;2)
Mà xy<=3
=>z=3 (t/m)
+) xy=3 => (x;y)=(1;3);(3;1)
Mà x<=y
=>(x;y)=(1;3)
=>z=3 (vô lí)
Vậy x=1; y=2 ; z=3
Tìm nghiệm nguyên dương của phương trình: y^2 - x(x+1)(x+2)(x+3) = 1
Kushito Kamigaya tham khảo nhé:
x² + (x+y)² = (x+9)²
<=> (x+y)² = (x+9)² - x²
<=> (x+y)² = 9(2x+9) (*)
Vì: 9 = 3² nên từ (*) ta thấy (2x+9) phải là số chính phương
=> 2x+9 = n² => 2x = (n-3)(n+3) => x = (n-3)(n+3)/2
n-3 và n+3 cùng chẳn hoặc cùng lẽ, nên x nguyên dương khi n là số lẽ lớn hơn 3
đặt n = 2k+1 với k > 1, (k nguyên)
có: 2x + 9 = (2k+1)² = 4k²+4k+1
=> x = 2k²+2k-4, thay x vào (*)
(x+y)² = 9(2k+1)² => x+y = 3(2k+1) = 6k+3 => y = 6k+3-x
=> y = 6k + 3 - 2k² - 2k + 4 = -2k² + 4k + 7 > 0
=> k² - 2k < 7/2 => (k-1)² < 7/2+1 = 9/2
=> k-1 < 3/√2 => k - 1 ≤ 2 => k ≤ 3
với đk k > 1 ở trên ta chỉ chọn được k = 2 hoặc k = 3
*k = 2 => x = 8, y = 7
*k = 3 => x = 20, y = 1
Tìm x,y,z,t nguyên dương thỏa mãn \(5\left(x+y+z+t\right)+10=2xyzt\)
Giả sử \(x\ge y\ge z\ge t\)
Có 5(x+y+z+t) = 2xyzt
<=> \(2=\dfrac{5}{yzt}+\dfrac{5}{xyz}+\dfrac{5}{xyt}+\dfrac{5}{xzt}+\dfrac{10}{xyzt}\le\dfrac{20}{t^3}+\dfrac{10}{t^4}\le\dfrac{30}{t^3}\)
<=> t3 \(\le15\)
<=> \(\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
TH1: t = 1
<=> \(2=\dfrac{5}{yz}+\dfrac{5}{xyz}+\dfrac{5}{xy}+\dfrac{5}{xz}+\dfrac{10}{xyz}=\dfrac{5}{xy}+\dfrac{5}{yz}+\dfrac{5}{zx}+\dfrac{15}{xyz}\)
\(\le\dfrac{15}{z^2}+\dfrac{15}{z^3}\le\dfrac{30}{z^2}\)
<=> z2 \(\le15\)
<=> \(\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)
- Với z = 1
PT <=> 5 (x+y+2) + 10 = 2xy
<=> (2x-5)(2y-5) = 65
<=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=35\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=9\\y=5\end{matrix}\right.\end{matrix}\right.\)
Vậy (x;y;z;t) = (35;3;1;1) hoặc (9;5;1;1) và có hoán vị
- Với z = 2;3 => Vô nghiệm
TH2: t = 2
PT <=> 5(x+y+z) + 20 = 4xyz
<=> \(4=\dfrac{5}{xy}+\dfrac{5}{yz}+\dfrac{5}{zx}+\dfrac{20}{xyz}\le\dfrac{35}{z^2}\)
<=> \(\left[{}\begin{matrix}z=1\left(l\right)\\z=2\left(c\right)\end{matrix}\right.\)
<=> 5(x+y+4) + 10 = 8xy
<=> (8x-5)(8y-5) = 265
=> Vô nghiệm
KL: Vậy (x;y;z;t) = (35;3;1;1) hoặc (9;5;1;1) và có hoán vị
tìm giá trị của m sao cho phương trình:
\(\left(9x+1\right)\left(x-2m\right)=\left(3x+2\right)\left(3x-5\right)\) có nghiệm x=1
Thay : \(x=1\) vào phương trình :
\(\left(9\cdot x+1\right)\left(1-2m\right)=\left(3\cdot1+2\right)\left(3\cdot1-5\right)\)
\(\Leftrightarrow10\cdot\left(1-2m\right)=5\cdot\left(-2\right)\)
\(\Leftrightarrow1-2m=-1\)
\(\Leftrightarrow m=1\)
tìm giá trị của m sao cho phương trình:
\(12-2\left(1-x\right)^2=4\left(x-m\right)-\left(x-3\right)\left(2x+5\right)\) có nghiệm x=3
Thay : \(x=3\) vào phương trình :
\(12-2\cdot\left(1-3\right)^2=4\cdot\left(3-m\right)-\left(3-3\right)\cdot\left(2\cdot3+5\right)\)
\(\Leftrightarrow12-8=12-4m\)
\(\Leftrightarrow4m=8\)
\(\Leftrightarrow m=2\)
thay x=3 vào pt ta được
\(12-2\left(2-3\right)^2=4\left(3-m\right)-\left(3-3\right)\left(2x+5\right)\)
\(12-2\left(4-12+9\right)=12-4m\)
\(12-8+24-18-12=-4m\)
\(-2=-4m=>m=\dfrac{1}{2}\)
vậy để pt có nghiệm x=3 thì m=\(\dfrac{1}{2}\)
từ nãy mk ghi đề bàu bị sai nhé thông cảm
sửa lại thay x=3 vào pt ta được
\(12-2\left(1-3\right)^2=4\left(3-m\right)-\left(3-3\right)\left(2x+5\right)\)
\(12-8=12-4m\)
\(-8=-4m=>m=2\)
a) tình GTNN của biểu thức \(M=x^2+y^2-xy-x+y+1\)
b) giải phương trình \(\left(y-4,5\right)^4+\left(y-5,5\right)^4-1=0\)
c) tìm nghiệm nguyên của phương trình \(3x^2+5y^2=345\)
GIÚP MÌNH VỚI LÀM ƠN
Đinh Tuấn Việt chỉ giỏi khoác lác thôi,giỏi thì làm bài này đi:
Tìm x;y;z;t là các số nguyên dương thỏa mãn: \(5\left(x+y+z+t\right)+15=2xyzt\)
tham khảo :Tìm nghiệm nguyên dương của phương trình sau : 5(x+y+z+t)+10=2xyzt
vì vai trò x,y,z,t như nhau nên \(x\ge y\ge z\ge t\)
khi đó 2xyzt=5(x+y+z+t)+10\(\le\)20x+10
⇒yzt\(\le\)15⇒t3\(\le\)15⇒t\(\le\)2Với t = 1 ta có : 2xyz = 5(x + y + z) +15 ≤ 15x + 15 ⇒2yz\(\le\)30⇒2z2\(\le\)30⇒z\(\le\)3Nếu z = 1 thì 2xy = 5(x + y) + 20 hay 4xy = 10(x + y) + 40 hay (2x – 5)(2y – 5) = 65 .
Dễ thấy rằng phương trình này có nghiệm là (x = 35; y = 3) và (x = 9; y = 5).
Giải tương tự cho các trường còn lại và trường hợp t=2. Cuối cùng ta tìm được nghiệm nguyên dương của phương trình đã cho là (x;y;z;t)=(35;3;1;1);(9;5;1;1) và các hoán vị của các bộ số này.
Ơ, thầy phynit có nhầm lẫn ko vậy, trong đề là 15 mà?
1) Tìm nghiệm nguyên của phương trình \(x^3-y^3-2y^2-3y-1=0\)
2) Tìm bộ nguyên dương (x,y,z) thỏa mãn phương trình
\(\left(x+y\right)^2+3x+y+1=z^2\)
Bài 2:
Với $x,y,z$ nguyên dương ta thấy:
\((x+y)^2+3x+y+1> (x+y)^2(1)\)
Và:
\((x+y)^2+3x+y+1< (x+y)^2+4(x+y)+4\)
hay $(x+y)^2+3x+y+1< (x+y+2)^2(2)$
Từ \((1);(2)\Rightarrow (x+y)^2< (x+y)^2+3x+y+1< (x+y+2)^2\)
\(\Leftrightarrow (x+y)^2< z^2< (x+y+2)^2\)
Theo nguyên lý kẹp suy ra $z^2=(x+y+1)^2$
$\Leftrightarrow (x+y)^2+3x+y+1=(x+y+1)^2$
$\Leftrightarrow x=y$
Thay vào PT ban đầu:
\((2x)^2+3x+x+1=z^2\Leftrightarrow (2x+1)^2=z^2\Rightarrow 2x+1=z\) (không có TH $2x+1=-z$ do $x,z$ cùng nguyên dương)
Vậy PT có nghiệm $(x,y,z)=(m,m,2m+1)$ với $m$ là số nguyên dương bất kỳ.
Lời giải:
Xét
PT \(\Leftrightarrow x^3=y^3+2y^2+3y+1\)
Ta thấy:
\(y^3+2y^2+3y+1=(y^3+3y^2+3y+1)-y^2=(y+1)^3-y^2\leq (y+1)^3(1)\)
\(y^3+2y^2+3y+1=(y^3-3y^2+3y-1)+5y^2+2=(y-1)^3+5y^2+2\)
\(>(y-1)^3(2)\)
Từ \((1);(2)\Rightarrow (y+1)^3\geq y^3+2y^2+3y+1> (y-1)^3\)
\(\Leftrightarrow (y+1)^3\geq x^3> (y-1)^3\)
Theo nguyên lý kẹp thì \(\left[\begin{matrix} x^3=(y+1)^3\\ x^3=y^3\end{matrix}\right.\)
Nếu \(x^3=(y+1)^3\Leftrightarrow y^3+2y^2+3y+1=(y+1)^3\)
\(\Leftrightarrow y=0\)
\(\Rightarrow x^3=1\Rightarrow x=1\)
Nếu \(x^3=y^3\Leftrightarrow y^3+2y^2+3y+1=y^3\)
\(\Leftrightarrow 2y^2+3y+1=0\Leftrightarrow (2y+1)(y+1)=0\Rightarrow y=-1\) (do $y$ nguyên)
$\Rightarrow x^3=y^3=-1\Rightarrow x=-1$
Vậy $(x,y)=(1,0); (-1,-1)$