4x³-x⁴-16x-16
Tìm số nguyên thỏa mãn .
hoặc . hoặc . . .Lời giải:
$x^2=4.4.4.4=16.16=(-16)(-16)=16^2=(-16)^2$
$\Rightarrow x=16$ hoặc $x=-16$.
giải pt
a.\(\sqrt{x^2-4x+4}=5\)
b.\(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)
Lời giải:
a. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{(x-2)^2}=5$
$\Leftrightarrow |x-2|=5$
$\Leftrightarrow x-2=5$ hoặc $x-2=-5$
$\Leftrightarrow x=7$ hoặc $x=-3$ (đều tm)
b. ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow \sqrt{16}.\sqrt{x+1}-3\sqrt{x+1}+\sqrt{4}.\sqrt{x+1}=16-\sqrt{x+1}$
$\Leftrightarrow 4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}$
$\Leftrightarrow 4\sqrt{x+1}=16$
$\Leftrightarrow \sqrt{x+1}=4$
$\Leftrightarrow x+1=16$
$\Leftrightarrow x=15$ (tm)
\(\sqrt{4x}\) - \(\sqrt{9x}\) + \(\sqrt{16x}\) = 2
b, \(\sqrt{4x}\) + \(2\sqrt{16x}\) - \(\sqrt{25x}\) = 1,2
c, \(\sqrt{16\left(x-1\right)}\) - \(\sqrt{x-1}\) + \(\sqrt{49\left(x-1\right)}\) =5
Cho biểu thức B = 16 x + 16 - 9 x + 9 + 4 x + 4 + x + 1
với x ≥ -1.
Tìm x sao cho B có giá trị là 16.
Để B = 16 thì:
⇔ x + 1 = 16 ⇔ x = 15 (thỏa mãn x ≥ -1)
\(\sqrt{16x-64}-12\sqrt{\dfrac{x-4}{4}}+2\sqrt{4x-16}=6\)
\(\Leftrightarrow\sqrt{x-4}\left(4-12\cdot\dfrac{1}{2}+2\cdot2\right)=6\)
=>x-4=9
hay x=13
* Giải phương trình:
a. \(x+\sqrt{x^2-4x+4}=\dfrac{1}{2}\)
b. \(\sqrt{9x^2-9}+\sqrt{4x^2-4}=\sqrt{16x^2-16}+2\)
b: Ta có: \(\sqrt{9x^2-9}+\sqrt{4x^2-4}=\sqrt{16x^2-16}+2\)
\(\Leftrightarrow\sqrt{x^2-1}=2\)
\(\Leftrightarrow x^2-1=4\)
hay \(x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)
a. \(x+\sqrt{x^2-4x+4}=\dfrac{1}{2}\)
<=> \(x+\sqrt{\left(x-2\right)^2}=\dfrac{1}{2}\)
<=> \(x+\left|x-2\right|=\dfrac{1}{2}\)
<=> \(\left[{}\begin{matrix}x+x-2=\dfrac{1}{2}\\x+\left[-\left(x-2\right)\right]=\dfrac{1}{2}\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}2x=\dfrac{5}{2}\\x-x+2=\dfrac{1}{2}\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{5}{4}\\0=\dfrac{-3}{2}\left(VLí\right)\end{matrix}\right.\)
Vậy nghiệm của PT là \(S=\left\{\dfrac{5}{4}\right\}\)
b. \(\sqrt{9x^2-9}+\sqrt{4x^2-4}=\sqrt{16x^2-16}+2\)
<=> \(\sqrt{9\left(x^2-1\right)}+\sqrt{4\left(x^2-1\right)}=\sqrt{16\left(x^2-1\right)}+2\)
<=> \(3\sqrt{x^2-1}+2\sqrt{x^2-1}-4\sqrt{x^2-1}=2\)
<=> \(\left(3+2-4\right)\sqrt{x^2-1}=2\)
<=> \(\sqrt{x^2-1}=2\)
<=> x2 - 1 = 4
<=> x2 = 5
<=> x = \(\sqrt{5}\)
\(\sqrt{25x+25}-\sqrt{16x+16}+\sqrt{9x+9}-\sqrt{4x+4}+\sqrt{x+1}=27\)
ĐKXĐ: \(x\ge-1\)
\(\sqrt{25\left(x+1\right)}-\sqrt{16\left(x+1\right)}+\sqrt{9\left(x+1\right)}-\sqrt{4\left(x+1\right)}+\sqrt{x+1}=27\)
\(\Leftrightarrow5\sqrt{x+1}-4\sqrt{x+1}+3\sqrt{x+1}-2\sqrt{x+1}+\sqrt{x+1}=27\)
\(\Leftrightarrow3\sqrt{x+1}=27\)
\(\Leftrightarrow\sqrt{x+1}=9\)
\(\Rightarrow x+1=81\)
\(\Rightarrow x=80\) (thỏa mãn)
tìm x:
a.(x-3)^4-(x+3)^4+24x^3=216
b.(2x+1)(16x^4-8x^3+4x^2-2x+1)-(2x-1)(16x^4+8x^3+4x^2+2x+1)=2
tìm GTNN của bt:
x^2+2x+4
x^2-x-5/3/4
4x^2-x-3/16
tính
a) (x-3)(x+3)-(x+1)^2
b) (4x-3)(4x+3)-16x^2
c)(x+4)(x^2-4x+16)-x^3
làm hết hộ
a) \(\left(x-3\right)\left(x+3\right)-\left(x+1\right)^2\) = \(x^2-9-\left(x^2+2x+1\right)\)
\(x^2-9-x^2-2x-1\) = \(-2x-10\)
b) \(\left(4x-3\right)\left(4x+3\right)-16x^2\) = \(16x^2-9-16x^2=-9\)
c) \(\left(x+4\right)\left(x^2-4x+16\right)-x^3\) = \(x^3-4x^2+16x+4x^2-16x+64-x^3\)
= \(64\)
\(a,\left(x-3\right)\left(x+3\right)-\left(x+1\right)^2=x^2-9-x^2-2x-1=-10-2x\) \(b,\left(4x-3\right)\left(4x+3\right)-16x^2=16x^2-9-16x^2=-9\)\(c,\left(x+4\right)\left(x^2-4x+16\right)-x^3=x^3+64-x^3=64\)