\(\frac{x}{y}=\frac{10}{9}\); \(\frac{y}{z}=\frac{3}{4}\)
và x - y + z = 78
Cho bốn số dương x; y; z; t chứng minh rằng :
\(\frac{9}{10}< \frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}< \frac{9}{4}\)
Ta có: \(A=\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}\)
\(A>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1>\frac{9}{10}\)
\(A< \frac{x+t}{x+y+z+t}+\frac{y+x}{x+y+z+t}+\frac{z+y}{x+y+z+t}+\frac{t+z}{x+y+z+t}=2< \frac{9}{4}\)
Vậy: \(\frac{9}{10}< A< \frac{9}{4}\)
bạn girl làm đúng rồi , giống ý tưởng của mình là đánh giá dãy trên nhỏ hơn 1 và lớn hơn 2
Nhưng bạn nên đánh giá rõ từng phân số nhé , không nên làm tắt như bài của bạn ấy :)
Tìm x,y,z biết : \(\frac{x}{y}=\frac{10}{9};\frac{y}{z}=\frac{3}{4}\) và x - y + z = 78
\(\frac{x}{y}=\frac{10}{9}\text{ }\Rightarrow\text{ }\frac{x}{10}=\frac{y}{9}\text{ }\left(1\right)\)
\(\frac{y}{z}=\frac{3}{4}=\frac{9}{12}\text{ }\Rightarrow\text{ }\frac{y}{9}=\frac{z}{12}\text{ }\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
Do đó : x = 6 . 10 = 60 ; y = 6 . 9 = 54 ' z = 6 . 12 = 72
Ta có: \(\frac{x}{y}=\frac{10}{9}\) và \(\frac{y}{z}=\frac{3}{4}\)
=> \(\frac{y}{z}=\frac{9}{12}\)
=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{87}{13}=6\)
=>\(\frac{x}{10}=6=>x=60\) ; \(\frac{y}{9}=6=>y=54\); \(\frac{z}{12}=6=>z=72\)
vậy x=60 ; y=54 ; z=72
Từ x/y=9/10
suy ra x/10=y/9 (1)
y/z=3/4
suy ra y/3=z/4 (2)
từ (1) và (2) suy ra
x/30=y/27=z/36=x-y+x/30-27+36=78/39=2 (theo tính chất của dãy tỉ số)
suy ra x/30=2 nên x=2*30=60
y/27=2 nên y=2*27=54
z/36=2 nên z=2*36=72
Vậy x=60
y=54
z=72
chuẩn 100% đó thầy mình dạy hoài
chúc bạn học tốt
Tìm x;y;x biết:
\(\frac{x}{y}=\frac{10}{9};\frac{y}{z}=\frac{3}{4}\) và x - y + z = 78
Do \(\frac{x}{y}=\frac{10}{9}\Rightarrow\frac{x}{10}=\frac{y}{9}\)(1)
\(\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{9}=\frac{z}{12}\)(2)
Từ (1) và (2) => \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
=> \(\begin{cases}x=6.10=60\\y=6.9=54\\z=6.12=72\end{cases}\)
Vậy x = 60; y = 54; z = 72
\(\frac{x}{y}=\frac{10}{9}\Rightarrow9x=10y\Rightarrow\frac{x}{10}=\frac{y}{9}\)
\(\frac{y}{z}=\frac{3}{4}\Rightarrow4y=3z\Rightarrow\frac{y}{3}=\frac{z}{4}\)
Từ \(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{9}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Áp dụng tc dãy tỉ
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
\(\Rightarrow\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}\)\(\Rightarrow\begin{cases}x=60\\y=54\\z=72\end{cases}\)
a)\(\frac{x}{y}=\frac{9}{10}\)và y-x=120
b)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x+y+z=81
c)\(\frac{x}{3}=\frac{y}{4}\)và 2x+5y=10
\(\frac{x}{y}=\frac{9}{10}\Rightarrow\left\{{}\begin{matrix}x=9k\\y=10k\end{matrix}\right.\Rightarrow y-x=120=10k-9k=k\Rightarrow\left\{{}\begin{matrix}x=1080\\y=1200\end{matrix}\right.\)
Ap dung day ti le bang nhau ta đưoc:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9\Rightarrow\left\{{}\begin{matrix}x=9.2=18\\y=9.3=27\\z=9.4=36\end{matrix}\right.\)
\(c,\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{26}=\frac{5}{13}\Rightarrow\left\{{}\begin{matrix}x=\frac{15}{13}\\y=\frac{20}{13}\end{matrix}\right.\)
Cho x , y , z \(\in Z\)thỏa : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\). Hãy tính giá trị biểu thức :
\(M=\frac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\)
tự suy nghĩ nhé bn o0o I am a studious person o0o,chỉ cần ngồi quy đồng sau làm từng bước là được nhaaaaaaaaa :)) ^_^
1.tìm các số x,y,z biết
a)\(\frac{x}{y}=\frac{7}{13}\)và x+y=60 b)\(\frac{x}{y}=\frac{y}{10}=\frac{z}{6}và\) x+y+z=92
c)\(\frac{x}{y}=\frac{9}{10}và\) y-x=120 d)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}và\) x+y+z=81
e)\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}và\) y-x=4 f)\(\frac{x}{3}=\frac{y}{4}và\) 2x+5y=10
1)
a) Ta có: \(\frac{x}{y}=\frac{7}{13}\).
=> \(\frac{x}{7}=\frac{y}{13}\) và \(x+y=60.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{60}{20}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{7}=3=>x=3.7=21\\\frac{y}{13}=3=>y=3.13=39\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(21;39\right).\)
c) Ta có: \(\frac{x}{y}=\frac{9}{10}.\)
=> \(\frac{x}{9}=\frac{y}{10}\) và \(y-x=120.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120.\)
\(\left\{{}\begin{matrix}\frac{x}{9}=120=>x=120.9=1080\\\frac{y}{10}=120=>y=120.10=1200\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1080;1200\right).\)
d) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=81.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=9=>x=9.2=18\\\frac{y}{3}=9=>y=9.3=27\\\frac{z}{4}=9=>z=9.4=36\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(18;27;36\right).\)
Mình chỉ làm 3 câu thôi nhé, dài quá bạn.
Chúc bạn học tốt!
Tìm x,y,z biết:
a) 2x = 3y ; 5y 7z và 3x - y + 4z = - 10
b) \(\frac{x-7}{8}=\frac{y-8}{9}=\frac{z-9}{10}và2x-y+3z=20\)
a) \(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{y}{14}=\frac{4z}{40}=\frac{3x-y+4z}{63-14+40}=\frac{-10}{89}\)
\(\Rightarrow\frac{x}{21}=\frac{-10}{89}\Rightarrow x=\frac{-210}{89};\frac{y}{14}=\frac{-10}{89}\Rightarrow y=\frac{-140}{89};\frac{z}{10}=\frac{-10}{89}\Rightarrow z=\frac{-100}{89}\)
b)\(\frac{x-7+7}{8+7}=\frac{y-8+8}{9+8}=\frac{z-9+9}{10+9}=\frac{x}{15}=\frac{y}{17}=\frac{z}{19}=\frac{2x}{30}=\frac{y}{17}=\frac{3z}{57}=\frac{20}{70}=\frac{2}{7}\)
\(\Rightarrow\frac{x}{15}=\frac{2}{7}\Rightarrow x=\frac{30}{7};\frac{y}{17}=\frac{2}{7}\Rightarrow y=\frac{34}{7};\frac{z}{19}=\frac{2}{7}\Rightarrow z=\frac{38}{7}\)
Giải phương trình: \(a,\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)\(b,\frac{x-5}{x-5}+\frac{x-6}{x-5}+\frac{x-7}{x-5}+...+\frac{1}{x-5}=4\)
a, \(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)(1)
ĐKXĐ: \(\hept{\begin{cases}x+9\ne0\\x+10\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-9\\x\ne-10\end{cases}}}\)
(1)\(\Leftrightarrow\frac{9.\left(x+9\right)}{90}+\frac{10.\left(x+10\right)}{90}=\frac{9.\left(x+9\right)}{\left(x+9\right)\left(x+10\right)}+\frac{10.\left(x+10\right)}{\left(x+9\right)\left(x+10\right)}\)
\(\Leftrightarrow9.\left(x+9\right)+10.\left(x+10\right)=9.\left(x+9\right)+10.\left(x+10\right)\)
\(\Leftrightarrow9x+81+10x+100=9x+81+10x+100\)
\(\Leftrightarrow9x+10x-9x-10x=81+100-81-100\)
\(\Leftrightarrow0x=0\)
\(\Rightarrow x\in R\)trừ -9 và -10
Giải phương trình \(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)
\(\Leftrightarrow\frac{9\left(X+9\right)\left(X+9\right)\left(X+10\right)+10\left(X+10\right)\left(X+10\right)\left(X+9\right)}{90\left(X+10\right)\left(X+9\right)}=\frac{9.90\left(X+9\right)+10.90\left(X+10\right)}{90\left(X+10\right)\left(X+9\right)}\)
\(\Rightarrow9\left(X+9\right)^2\left(X+10\right)+10\left(X+10\right)^2\left(X+9\right)=810\left(X+9\right)+900\left(X+10\right)\)
\(\Leftrightarrow\left(9X+90\right)\left(X^2+18X+81\right)+\left(10X+90\right)\left(X^2+20X+100\right)=810X+7290+900X+9000\)
\(\Leftrightarrow\)9X3+162X2+729X+90X2+1620X+7290+10X3+200X2+1000X+90X2+1800X+9000=1710X+16290
\(\Leftrightarrow\)19X3+542X2+5149X+16290=1710X+16290
\(\Leftrightarrow\)19X3+542X2=16290-16290+1710X-5149X
\(\Leftrightarrow\)19X3+542X2=-3439X
\(\Leftrightarrow\)19X3+542X2+3439X=0
RỒI GIẢI TIẾP
Mk nghĩ nên giải theo cách này thì hay hơn ( mk mớp 7 thui nên bài làm mang tính chất tham khảo nhé )
Ta có :
\(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)
\(\Leftrightarrow\)\(\left(\frac{x+9}{10}+1\right)+\left(\frac{x+10}{9}+1\right)=\left(\frac{9}{x+10}+1\right)+\left(\frac{10}{x+9}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+19}{10}+\frac{x+19}{9}=\frac{x+19}{x+10}+\frac{x+19}{x+9}\)
\(\Leftrightarrow\)\(\frac{x+19}{10}+\frac{x+19}{9}-\frac{x+19}{x+10}-\frac{x+19}{x+9}=0\)
\(\Leftrightarrow\)\(\left(x+19\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}\right)=0\)
Xét trường hợp \(x=0\)
\(\Rightarrow\)\(\left(x+19\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}\right)=\left(x+19\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{10}-\frac{1}{9}\right)=\left(x+19\right).0=0\)
( NHẬN )
\(\Rightarrow\) Nếu \(x\ne0\) thì \(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}\ne0\)
Xét trường hợp x nguyên dương ta có :
\(\frac{1}{10}>\frac{1}{x+10}\)
\(\frac{1}{9}>\frac{1}{x+9}\)
\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+10}-\frac{1}{x+9}>0\)
Xét trường hợp x nguyên âm ta có :
\(\frac{1}{10}< \frac{1}{x+10}\)
\(\frac{1}{9}< \frac{1}{x+9}\)
\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}-\frac{1}{x+9}-\frac{1}{x+10}< 0\)
Từ đó suy ra :
\(x+19=0\)
\(\Rightarrow\)\(x=-19\)
Vậy \(x=0\) hoặc \(x=-19\)