Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Đình Tiến
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 8 2023 lúc 18:21

a: =(6x)^2-(3x-2)^2

=(6x-3x+2)(6x+3x-2)

=(9x-2)(3x+2)

d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)

\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)

=8x(x^2+1)

e: =(4x)^2-2*4x*3y+(3y)^2

=(4x-3y)^2

f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)

\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)

g: =(4x)^3+1^3

=(4x+1)(16x^2-4x+1)

k: =x^3(27x^3-8)

=x^3(3x-2)(9x^2+6x+4)

l: =(x^3-y^3)(x^3+y^3)

=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)

Nguyễn Khánh
Xem chi tiết
Kiều Vũ Linh
17 tháng 12 2023 lúc 14:43

Bài 1

a) 5x²y - 20xy²

= 5xy(x - 4y)

b) 1 - 8x + 16x² - y²

= (1 - 8x + 16x²) - y²

= (1 - 4x)² - y²

= (1 - 4x - y)(1 - 4x + y)

c) 4x - 4 - x²

= -(x² - 4x + 4)

= -(x - 2)²

d) x³ - 2x² + x - xy²

= x(x² - 2x + 1 - y²)

= x[(x² - 2x+ 1) - y²]

= x[(x - 1)² - y²]

= x(x - 1 - y)(x - 1 + y)

= x(x - y - 1)(x + y - 1)

e) 27 - 3x²

= 3(9 - x²)

= 3(3 - x)(3 + x)

f) 2x² + 4x + 2 - 2y²

= 2(x² + 2x + 1 - y²)

= 2[(x² + 2x + 1) - y²]

= 2[(x + 1)² - y²]

= 2(x + 1 - y)(x + 1 + y)

= 2(x - y + 1)(x + y + 1)

Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 14:47

Bài 2:

a: \(x^2\left(x-2023\right)+x-2023=0\)

=>\(\left(x-2023\right)\left(x^2+1\right)=0\)

mà \(x^2+1>=1>0\forall x\)

nên x-2023=0

=>x=2023

b: 

ĐKXĐ: x<>0

\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)

=>\(-x\left(x-4\right)+2x^2-4x-9=0\)

=>\(-x^2+4x+2x^2-4x-9=0\)

=>\(x^2-9=0\)

=>(x-3)(x+3)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

c: \(x^2+2x-3x-6=0\)

=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)

=>\(x\left(x+2\right)-3\left(x+2\right)=0\)

=>(x+2)(x-3)=0

=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

d: 3x(x-10)-2x+20=0

=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)

=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)

=>\(\left(x-10\right)\left(3x-2\right)=0\)

=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)

Câu 1:

a: \(5x^2y-20xy^2\)

\(=5xy\cdot x-5xy\cdot4y\)

\(=5xy\left(x-4y\right)\)

b: \(1-8x+16x^2-y^2\)

\(=\left(16x^2-8x+1\right)-y^2\)

\(=\left(4x-1\right)^2-y^2\)

\(=\left(4x-1-y\right)\left(4x-1+y\right)\)

c: \(4x-4-x^2\)

\(=-\left(x^2-4x+4\right)\)

\(=-\left(x-2\right)^2\)

d: \(x^3-2x^2+x-xy^2\)

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)

\(=x\left[\left(x-1\right)^2-y^2\right]\)

\(=x\left(x-1-y\right)\left(x-1+y\right)\)

e: \(27-3x^2\)

\(=3\left(9-x^2\right)\)

\(=3\left(3-x\right)\left(3+x\right)\)

f: \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x+1+y\right)\left(x+1-y\right)\)

Kiều Vũ Linh
17 tháng 12 2023 lúc 14:55

Bài 2

a) x²(x - 2023) - 2023 + x = 0

x²(x - 2023) - (x - 2023) = 0

(x - 2023)(x² - 1) = 0

x - 2023 = 0 hoặc x² - 1 = 0

*) x - 2023 = 0

x = 2023

*) x² - 1 = 0

x² = 1

x = 1 hoặc x = -1

Vậy x = -1; x = 1; x = 2023

b) -x(x - 4) + (2x³ - 4x² - 9x) : x = 0

-x² + 4x + 2x² - 4x - 9 = 0

x² - 9 = 0

x² = 9

x = 3 hoặc x = -3

Vậy x = 3; x = -3

c) x² + 2x - 3x - 6 = 0

(x² + 2x) - (3x + 6) = 0

x(x + 2) - 3(x + 2) = 0

(x + 2)(x - 3) = 0

x + 2 = 0 hoặc x - 3 = 0

*) x + 2 = 0

x = -2

*) x - 3 = 0

x = 3

Vậy x = -2; x = 3

d) 3x(x - 10) - 2x + 20 = 0

3x(x - 10) - (2x - 20) = 0

3x(x - 10) - 2(x - 10) = 0

(x - 10)(3x - 2) = 0

x - 10 = 0 hoặc 3x - 2 = 0

*) x - 10 = 0

x = 10

*) 3x - 2 = 0

3x = 2

x = 2/3

Vậy x = 2/3; x = 10

Buddy
Xem chi tiết
Vui lòng để tên hiển thị
22 tháng 7 2023 lúc 8:59

`a, 4x^3 - 16x = 4x(x^2-4) = 4x(x-2)(x+2)`

`b, x^4 - y^4 = (x^2-y^2)(x^2+y^2) = (x-y)(x+y)(x^2+y^2)`

`c, xy^2 + x^2y + 1/4y^3`

`= y(xy + x^2 + 1/4y^2)`

`d, x^2 + 2x - y^2 + 1 = (x+1)^2 - y^2`

`= (x+1+y)(x+1-y)`

Nunalkes Thanh
Xem chi tiết
Yen Nhi
30 tháng 10 2021 lúc 22:25

\(2x^3y-2xy^3-4xy^2-2xy\)

\(=2xy.\left(x^2-y^2-2y-1\right)\)

\(=2xy.[x^2-\left(y^2+2y+1\right)]\)

\(=2xy.[x^2-\left(y+1\right)^2]\)

\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)

Vậy chọn đáp án A

Khách vãng lai đã xóa
Bùi Nguyễn Châu Anh
12 tháng 1 2022 lúc 14:20

chọn A

Khách vãng lai đã xóa
what the fack
Xem chi tiết
Không Tên
15 tháng 8 2018 lúc 18:30

mk ghi đáp án, ko phân tích đc thì IB mk

a) \(x^2+6xy+9y^2=\left(x+3y\right)^2\)

b) \(4a^4-4a^2b^2+b^4=\left(2a^2-b^2\right)^2\)

c)  \(x^6+y^2-2x^3y=\left(x^3-y\right)^2\)

d)  \(\left(x+y\right)^3-\left(x-y\right)^3=2y\left(3x^2+y^2\right)\)

e)  \(25x^4-10x^2y^2+y^4=\left(5x^2-y^2\right)^2\)

f) \(-a^2-2a-1=-\left(a+1\right)^2\)

g)  \(27b^3-8a^3=\left(3b-2a\right)\left(9b^2+6ab+4a^2\right)\)

h)  \(x^3+9x^2y+27xy^2+27y^3=\left(x+3y\right)^3\)

i) \(16x^2-9\left(x+y\right)^2=\left(x-3y\right)\left(7x+3y\right)\)

Trang Lê
Xem chi tiết

1) \(x^2+2xy+y^2-x-y-12\)

\(\left(x+y\right)^2-\left(x+y\right)-12\)

Đặt \(x+y=z\) (đặt ẩn phụ)

\(\Rightarrow z^2-z-12\)

\(=z^2+3z-4z-12\)

\(=z\left(z+3\right)-4\left(z+3\right)\)

\(=\left(z+3\right)\left(z-4\right)\)

Khi đó: \(\left(x+y+3\right)\left(x+y-4\right)\)

#HuyenAnh

Khách vãng lai đã xóa
Jimin
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2022 lúc 19:45

a: \(x^2+6xy+9y^2=\left(x+3y\right)^2\)

b: \(4a^4-4a^2b^2+b^4=\left(2a^2-b^2\right)^2\)

\(x^6-2x^3y+y^2=\left(x^3-y\right)^2\)

b: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\left(3x^2+y^2\right)\)

\(25x^4-10x^2y^2+y^4=\left(5x^2-y^2\right)^2\)

\(-a^2-2a-1=-\left(a+1\right)^2\)

Nguyễn Hoàng
Xem chi tiết
Nhi Phí
Xem chi tiết
Trên con đường thành côn...
28 tháng 8 2021 lúc 20:28

undefined

Kirito-Kun
28 tháng 8 2021 lúc 20:31

a. y4 - 14y2 + 49

Gọi y2 là t, ta có:

t2 - 14t + 49

<=> t2 - 14t + 72

<=> (t - 7)2

Thay x2 = t

<=> (x2 - 7)2

b. \(\dfrac{1}{4}-x^2\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^2-x^2\)

\(\Leftrightarrow\left(\dfrac{1}{2}-x\right)\left(\dfrac{1}{2}+x\right)\)

c. x4 - 16

<=> (x2)2 - 42

<=> (x2 - 4)(x2 + 4)

d. x2 - 9

<=> x2 - 32

<=> (x - 3)(x + 3)

 

Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 20:38

Bài 1: 

a: \(y^2-14y^2+49=\left(y-7\right)^2\)

b: \(\dfrac{1}{4}-x^2=\left(\dfrac{1}{2}-x\right)\left(\dfrac{1}{2}+x\right)\)

c: \(x^4-16=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)

d: \(x^2-9=\left(x-3\right)\left(x+3\right)\)