Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Crazy 2002
Xem chi tiết
Võ Đông Anh Tuấn
17 tháng 9 2016 lúc 9:55

\(\sqrt{\left(x^2-4x+4\right)}-2=7\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=9\)

\(\Leftrightarrow\left|x-2\right|=9\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=9\\x-2=-9\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=11\\x=-7\end{array}\right.\)

Vậy \(x\in\left\{-7;11\right\}\)

Nguyễn Thị My
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 16:19

1. A

2. C 

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 21:12

Câu 1: A

Câu 2: C

Câu 2: 

panda8734
Xem chi tiết
Akai Haruma
3 tháng 2 lúc 22:29

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

Akai Haruma
3 tháng 2 lúc 22:48

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

Akai Haruma
3 tháng 2 lúc 22:50

Câu 3:

$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$

Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$

Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$

BHQV
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
6 tháng 7 2023 lúc 10:12

`-1,5xy^2 + xy - 7`

Bậc của đa thức là: `1 + 2 = 3`

`-4x^4 + 7y^2 + 6`

Bậc của đa thức là: `4`

Khánh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2021 lúc 22:12

\(\Leftrightarrow3x+2>16\)

hay \(x>\dfrac{14}{3}\)

Phúc Ong
Xem chi tiết
Chi Quế
Xem chi tiết
Vũ Quốc Huy
25 tháng 3 2019 lúc 18:50

a) x2-4x+3=0

có Δ' = b'2-ac= 4-3=1 >0

nên phương trình có 2 nghiệm phân biệt: x1= 3; x2= 1

b) x2 -4=0

⇔ x2=4

\(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)

c)x2+4x=0

⇔x (x+4)=0

\(\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Nguyễn Thành Trương
25 tháng 3 2019 lúc 20:01

Hỏi đáp Toán

Hỏi đáp Toán

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 8 2017 lúc 10:11

Ta có

P ( x ) = 2 x 3 − 3 x + x 5 − 4 x 3 + 4 x − x 5 + x 2 − 2 = x 5 − x 5 + 2 x 3 − 4 x 3 + x 2 + ( 4 x − 3 x ) − 2 = − 2 x 3 + x 2 + x − 2  Và  Q ( x ) = x 3 − 2 x 2 + 3 x + 1 + 2 x 2 = x 3 + − 2 x 2 + 2 x 2 + 3 x + 1 = x 3 + 3 x + 1

Khi đó

M ( x ) = P ( x ) + Q ( x ) = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 3 + x 2 + ( x + 3 x ) − 2 + 1 = − x 3 + x 2 + 4 x − 1

Bậc của  M ( x )   =   - x 3   +   x 2   +   4 x   -   1   l à   3

Chọn đáp án C

Muichirou Tokitou
Xem chi tiết
Akai Haruma
23 tháng 5 2021 lúc 19:47

Lời giải:

1.

$4x+9=0$

$4x=-9$

$x=\frac{-9}{4}$
2.

$-5x+6=0$

$-5x=-6$

$x=\frac{6}{5}$

3.

$x^2-1=0$

$x^2=1=1^2=(-1)^2$

$x=\pm 1$

4.

$x^2-9=0$

$x^2=9=3^2=(-3)^2$

$x=\pm 3$

Akai Haruma
23 tháng 5 2021 lúc 19:48

5.

$x^2-x=0$

$x(x-1)=0$

$x=0$ hoặc $x-1=0$

$x=0$ hoặc $x=1$

6.

$x^2-2x=0$

$x(x-2)=0$

$x=0$ hoặc $x-2=0$

$x=0$ hoặc $x=2$

7.

$x^2-3x=0$

$x(x-3)=0$

$x=0$ hoặc $x-3=0$ 

$x=0$ hoặc $x=3$

8.

$3x^2-4x=0$

$x(3x-4)=0$

$x=0$ hoặc $3x-4=0$

$x=0$ hoặc $x=\frac{4}{3}$