Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Như
Xem chi tiết
Phương Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 23:53

Bài 2: 

a: \(x^2-4x+3=0\)

=>x=1 hoặc x=3

\(x_1^2+x_2^2=1^2+3^2=10\)

b: \(\dfrac{1}{x_1+2}+\dfrac{1}{x_2+2}=\dfrac{1}{1}+\dfrac{1}{5}=\dfrac{6}{5}\)

c: \(x_1^3+x_2^3=1^3+3^3=28\)

d: \(x_1-x_2=1-3=-2\)

Dương Thị Thu Hiền
Xem chi tiết
Triệu Quang Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2023 lúc 0:07

a: =>4x-3x=1-2

=>x=-1

b: =>3x=12

=>x=4

c: =>2(x^2-6)=x(x+3)

=>2x^2-12-x^2-3x=0

=>x^2-3x-12=0

=>\(x=\dfrac{3\pm\sqrt{57}}{2}\)

Chioru Asakai
Xem chi tiết
Vân Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2023 lúc 23:18

a: =>4x-3x=1-2

=>x=-1

b: =>3x=12

=>x=4

c: =>2(x^2-6)=x(x+3)

=>2x^2-12=x^2+3x

=>x^2-3x-12=0

=>\(x=\dfrac{3\pm\sqrt{57}}{2}\)

Tây Ẩn
Xem chi tiết
Trần Ái Linh
2 tháng 3 2021 lúc 20:59

1) `x^2+4-2(x-1)=(x-2)^2`

`<=>x^2+4-2x+2=x^2-4x+4`

`<=>-2x+2=-4x`

`<=>2x=-2`

`<=>x=-1`

.

2) ĐKXĐ: `x \ne \pm 3`

`(x+3)/(x-3)-(x-1)/(x+3)=(x^2+4x+6)/(x^2-9)`

`<=>(x+3)^2-(x-1)(x-3)=x^2+4x+6`

`<=>x^2+6x+9-x^2+4x-3=x^2+4x+6`

`<=>10x+6=x^2+4x+6`

`<=>x^2-6x=0`

`<=>x(x-6)=0`

`<=>x=0;x=6`

.

3) ĐKXĐ: `x \ne \pm 3`

`(3x-3)/(x^2-9) -1/(x-3 )= (x+1)/(x+3)`

`<=>(3x-3)-(x+3)=(x+1)(x-3)`

`<=> 2x-6=x^2-2x-3`

`<=>x^2-4x+3=0`

`<=>x^2-x-3x+3=0`

`<=>x(x-1)-3(x-1)=0`

`<=>(x-3)(x-1)=0`

`<=> x=3;x=1`

Vậy...

Quách Minh Hương
Xem chi tiết
Nguyễn Ngọc Lộc
6 tháng 6 2020 lúc 22:31

a, Câu này dễ quá bỏ qua nha :)

b, Ta có : \(\Delta^,=b^{,2}-ac=\left(-2\right)^2-\left(m+1\right)=4-m-1=3-m\)

- Để phương trình có 2 nghiệm phân biết thì \(\Delta^,>0\)

=> \(m< 3\)

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=m+1\end{matrix}\right.\)

- Để \(x^2_1+x^2_2=3\left(x_1+x_2\right)\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2=3\left(x_1+x_2\right)\)

<=> \(4^2-2\left(m+1\right)=3.4=12\)

<=> \(-2\left(m+1\right)=-4\)

<=> \(m+1=2\)

<=> \(m=1\left(TM\right)\)

Vậy ....

Freya
Xem chi tiết
Akai Haruma
25 tháng 5 2022 lúc 17:20

Lời giải:
Áp dụng hệ thức Viet:

$x_1+x_2=\frac{-4}{3}; x_1x_2=\frac{1}{3}$

Khi đó:
\(B=\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=\frac{x_1(x_1-1)+x_2(x_2-1)}{(x_1-1)(x_2-1)}\)

\(=\frac{x_1^2+x_2^2-(x_1+x_2)}{x_1x_2-(x_1+x_2)+1}=\frac{(x_1+x_2)^2-2x_1x_2-(x_1+x_2)}{x_1x_2-(x_1+x_2)+1}\) 

\(=\frac{(\frac{-4}{3})^2-2.\frac{1}{3}-\frac{-4}{3}}{\frac{1}{3}-\frac{-4}{3}+1}=\frac{11}{12}\)