Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thị Thiệm Lê
Xem chi tiết
Đỗ Tuệ Lâm
6 tháng 3 2022 lúc 10:37

Phân tích: Phương trình hoàn độ giao điểm: 

\(x^2+2x-3=x+m\Leftrightarrow x^2+x-3-m=0\left(1\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại 2 điểm phân biệt A ; B 

=> (1) có 2 nghiệm phân biệt 

<=> \(\Delta>0\) \(\Leftrightarrow m>\dfrac{-13}{4}\left(2\right)\)

giả sử: \(A\left(x_1;y_1\right),B\left(x_2;y_2\right)\) với \(x_1;x_2\) là hai nghiệm của (1) Ta phải có :

\(\left(y_1-1\right)\left(y_2-2\right)< 0\Leftrightarrow\left(x_1+m-1\right)\left(x_2+m-1\right)< 0\)

\(\Leftrightarrow x_1x_2+\left(m-1\right)\left(x_1+x_2\right)+m^2-2m+1< 0\)

\(\Leftrightarrow m^2-4m-1< 0\Leftrightarrow2-\sqrt{5}< m< 2+\sqrt{5}\left(thỏa\left(2\right)\right)\)

\(m\in Z\Rightarrow m\in\left\{0;1;2;3;4\right\}\)

Kdvlhuuui
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2023 lúc 1:01

a: PTHĐGĐ là:

x^2-2x-|m|-1=0

a*c=-|m|-1<0

=>(d)luôn cắt (P) tại hai điểm phân biệt

b: Bạn bổ sung lại đề đi bạn

Bùi Hiền Lương
Xem chi tiết
Hoàng Thanh Tuấn
31 tháng 5 2017 lúc 23:12

đường thẳng \(d^'\)và \(d\)cắt nhau tại một điểm A trên trục tung nên điểm A có hoành độ \(x_a=0\)và tạo độ A thỏa mãn phương trình \(d^'\)nên :\(\Rightarrow y_a=-2.0+1=1\)\(\Rightarrow A\left(0;1\right)\)Mà do a là giao điểm của 2 đường \(d;d^'\)nên toạn độ A cũng thỏa mãn phương trình của \(d\)\(\Rightarrow1=-m^2+m+1\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow m\orbr{\begin{cases}m=0\\m=1\end{cases}}\)

câu b :

Xét phương trình hoành độ gia điểm của P và d có :

\(x^2=2mx-m^2+m+1\Leftrightarrow x^2-2mx+m^2-m-1=0\)

để hai đồ thị cắt nhau tại 2 điểm phân biệt thì \(\Delta^'=m^2+m^2-m-1=2m^2-m-1>0\)

\(\left(m-1\right)\left(2m+1\right)>0\Leftrightarrow\orbr{\begin{cases}m< -\frac{1}{2}\\m>1\end{cases}}@\)

khi đó theo vieet có :\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m^2+m+1\end{cases}}\)

\(\Rightarrow y_1+y_2+2\left(x_1+x_2\right)=22\)với \(y_1=x^2_1;y_2=x_2^2\)

\(\Rightarrow\left(\left(x_1+x_2\right)^2-2x_1.x_2\right)+\left(x_1+x_2\right)2=22\)thay vieet ta có :

\(\left(2m\right)^2-2\left(-m^2+m+1\right)+2.2m=22\)

\(\Leftrightarrow6m^2+2m-24=0\Leftrightarrow\orbr{\begin{cases}m=\frac{-1+\sqrt{144}}{6}\\m=\frac{-1-\sqrt{144}}{6}\end{cases}}\)thỏa mãn @ 

Kết luận nghiệm

nguyễn hoàng phương nhàn
4 tháng 7 2020 lúc 8:55

tính denta sai rùi rùi bạn ơi 

phải là 145 chứ ko phải 144 

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 3 2019 lúc 5:20

Hoàng Quảng
Xem chi tiết
Lê Thị Thục Hiền
26 tháng 5 2021 lúc 22:25

a) \(A\in\left(d\right)\Rightarrow9=-3m+1-m^2\)

\(\Leftrightarrow m^2+3m+8=0\) \(\Leftrightarrow\left(m+\dfrac{3}{2}\right)^2+\dfrac{23}{4}=0\)(vn)

Vậy không tồn tại m để (d) đi qua A(-1;9)

b) Xét pt hoành độ gđ của (P) và (d) có:
\(2x^2=3mx+1-m^2\)

\(\Leftrightarrow2x^2-3mx-1+m^2=0\)

\(\Delta=9m^2-4.2\left(-1+m^2\right)=m^2+8>0\) với mọi m

=> Pt luôn có hai nghiệm pb => (d) luôn cắt (P) tại hai điểm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3m}{2}\\x_1x_2=\dfrac{m^2-1}{2}\end{matrix}\right.\)

\(x_1+x_2=2x_1x_2\)

\(\Leftrightarrow\dfrac{3m}{2}=2.\dfrac{m^2-1}{2}\) \(\Leftrightarrow2m^2-3m-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy...

Linh Linh
9 tháng 6 2022 lúc 21:13
dương
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2021 lúc 17:22

Phương trình hoành độ giao điểm (d) và (P):

\(x^2=\left(m+2\right)x-2m\Leftrightarrow x^2-\left(m+2\right)x+2m=0\) (1)

(d) cắt (P) tại 2 điểm pb khi và chỉ khi (1) có 2 nghiệm pb

\(\Leftrightarrow\Delta=\left(m+2\right)^2-8m>0\)

\(\Leftrightarrow\left(m-2\right)^2>0\Leftrightarrow m\ne2\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2+\left(m+2\right)x_2=12\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2+\left(m+2\right)x_2=12\)

\(\Leftrightarrow\left(m+2\right)x_1-2m+\left(m+2\right)x_2=12\)

\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m-12=0\)

\(\Leftrightarrow\left(m+2\right)^2-2m-12=0\)

\(\Leftrightarrow m^2+2m-8=0\Rightarrow\left[{}\begin{matrix}m=-4\\m=2\left(loại\right)\end{matrix}\right.\)

nho quả
Xem chi tiết
Hồng Phúc
20 tháng 12 2020 lúc 22:25

Phương trình hoành độ giao điểm:

\(x^2-2x-3=x-m\)

\(\Leftrightarrow x^2-3x+m-3=0\left(1\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt nằm cùng một phía với trục tung khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt cùng dấu

\(\left\{{}\begin{matrix}\Delta>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}21-4m>0\\m-3>0\end{matrix}\right.\Leftrightarrow3< m< \dfrac{21}{4}\)

Theo định lí Vi-et: \(x_1+x_2=3\Rightarrow x_2=3-x_1\)

\(x^2_2=16x^2_1\)

\(\Leftrightarrow\left(3-x_1\right)^2=16x^2_1\)

\(\Leftrightarrow x_1^2-6x_1+9=16x^2_1\)

\(\Leftrightarrow15x_1^2+6x_1-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=-1\\x_1=\dfrac{3}{5}\end{matrix}\right.\)

Nếu \(x_1=-1\Rightarrow m=-1\left(l\right)\)

Nếu \(x_1=\dfrac{3}{5}\Rightarrow m=\dfrac{111}{25}\left(tm\right)\)

Vậy \(m=\dfrac{111}{25}\)

Nghĩa Monster
Xem chi tiết
Kiyotaka Ayanokoji
11 tháng 7 2020 lúc 21:37

Trả lời: 

Phương trình hoành độ giao điểm (P) và (d) ta có:

\(-x^2=2x+m-1\)

\(\Leftrightarrow x^2+2x+m-1=0\)(1)

Ta có: \(\Delta=2^2-4.1.\left(m-1\right)\)

              \(=4-4m+4\)

               \(=8-4m\)

Để phương trình (1) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

                                                                \(\Leftrightarrow8-4m>0\)

                                                                \(\Leftrightarrow4m< 8\)

                                                                 \(\Leftrightarrow m< 2\)

\(\Rightarrow\)Phương trình (1) có 2 nghiệm phân biệt 

\(\Rightarrow\)(d) cắt (P) tại 2 diểm phân biệt \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)

Áp dụng Vi-ét \(\hept{\begin{cases}x_1+x_2=-2\left(1\right)\\x_1.x_2=m-1\left(2\right)\end{cases}}\)

Ta có \(y_1=-x_1^2\)\(y_2=-x_2^2\)

Theo đề bài:

\(x_1.y_1-x_2.y_2-x_1.x_2=4\)

\(\Leftrightarrow x_1.\left(-x_1^2\right)-x_2.\left(-x_2^2\right)-x_1.x_2=4\)

\(\Leftrightarrow-x_1^3+x_2^3-x_1.x_2=4\)

\(\Leftrightarrow-\left(x_1^3-x_2^3\right)-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left(x_1^2+x_1.x_2+x_2^2\right)-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-2x_1.x_2+x_1.x_2\right]-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left[\left(x_1+x_2\right)^2-x_1.x_2\right]-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left[\left(-2\right)^2-m+1\right]-\left(m-1\right)=4\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left(4-m+1\right)=4+m-1\)

\(\Leftrightarrow-\left(x_1-x_2\right).\left(3-m\right)=m+3\)

\(\Leftrightarrow-\left(x_1-x_2\right)=\frac{m+3}{3-m}\)

\(\Leftrightarrow x_1-x_2=\frac{m+3}{m-3}\)(3)

Từ (1) (3) ta có: \(\hept{\begin{cases}x_1+x_2=-2\\x_1-x_2=\frac{m+3}{m-3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x_1=-2+\frac{m+3}{m-3}=\frac{9-m}{m-3}=-\left(m+3\right)\\x_1+x_2=-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{-\left(m+3\right)}{2}\\x_2=\frac{m-1}{2}\end{cases}}\)

Thay x1, x2 vào (2) ta có

\(x_1.x_2=m-1\)

\(\Leftrightarrow\frac{-\left(m+3\right)}{2}.\frac{m-1}{2}=m-1\)

\(\Leftrightarrow\frac{-\left(m+3\right)}{2}=2\)

\(\Leftrightarrow-\left(m+3\right)=4\)

\(\Leftrightarrow m+3=-4\)

\(\Leftrightarrow m=-7\)(TM)

Vậy \(m=-7\) thì thỏa mãn bài toán 

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 4 2018 lúc 7:34