Ôn tập chương II

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nho quả

Cho Parabol (P) y = x2 - 2x -3.

Tìm m để đường thẳng (d) y=x-m cắt (P) tại hai điểm phân biệt A(x1,y1), B(x2,y2) ở về cùng một phía với trục tung và thỏa (x2)2 = 16(x1)2.

Hồng Phúc
20 tháng 12 2020 lúc 22:25

Phương trình hoành độ giao điểm:

\(x^2-2x-3=x-m\)

\(\Leftrightarrow x^2-3x+m-3=0\left(1\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt nằm cùng một phía với trục tung khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt cùng dấu

\(\left\{{}\begin{matrix}\Delta>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}21-4m>0\\m-3>0\end{matrix}\right.\Leftrightarrow3< m< \dfrac{21}{4}\)

Theo định lí Vi-et: \(x_1+x_2=3\Rightarrow x_2=3-x_1\)

\(x^2_2=16x^2_1\)

\(\Leftrightarrow\left(3-x_1\right)^2=16x^2_1\)

\(\Leftrightarrow x_1^2-6x_1+9=16x^2_1\)

\(\Leftrightarrow15x_1^2+6x_1-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=-1\\x_1=\dfrac{3}{5}\end{matrix}\right.\)

Nếu \(x_1=-1\Rightarrow m=-1\left(l\right)\)

Nếu \(x_1=\dfrac{3}{5}\Rightarrow m=\dfrac{111}{25}\left(tm\right)\)

Vậy \(m=\dfrac{111}{25}\)


Các câu hỏi tương tự
Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Hoàng Anh
Xem chi tiết
Liên Phạm
Xem chi tiết
Phuongtrang Nguyen
Xem chi tiết
Kuramajiva
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết