Phát biểu quy ước về tập xác định của hàm số cho bởi công thức ?
Từ đó hai hàm số : \(y=\dfrac{x+1}{\left(x+1\right)\left(x^2+2\right)}\) và \(y=\dfrac{1}{x^2+2}\) có gì khác nhau ?
Phát biểu quy ước về tập xác định của hàm số cho bởi công thức ?
Từ đó hai hàm số : \(y=\dfrac{x+1}{\left(x+1\right)\left(x^2+2\right)}\) và \(y=\dfrac{1}{x^2+2}\) có gì khác nhau ?
Thế nào là hàm số đồng biến (nghịch biến) trên khoảng (a; b) ?
Thảo luận (1)Hướng dẫn giảiHàm số đồng biến trên (a,b)
⇔ ∀x1, x2 ∈ (a, b): x1<x2 ⇒ f(x1) < f(x2)
Hàm số nghịch biến trên (a,b)
⇔ ∀x1, x2 ∈ (a, b): x1 < x2 ⇒ f(x1) > f(x2)
(Trả lời bởi qwerty)
Thế nào là một hàm số chẵn ? Thế nào là một hàm số lẻ ?
Thảo luận (1)Hướng dẫn giảiCho hàm số y = f(x) có tập xác định D
Nếu \(\forall x\) ∈ D, ta có -x ∈ D và f(-x) = f(x) thì f(x) là hàm số chẵn trên D.
Nếu \(\forall x\) ∈ D, ta có -x ∈ D và f(-x) = -f(x) thì f(x) là hàm số lẻ trên D.
(Trả lời bởi qwerty)
Chỉ ta khoảng đồng biến, khoảng nghịch biến của hàm số \(y=ax^2+bx+c\) trong mỗi trường hợp \(a>0;a< 0\) ?
Thảo luận (1)Hướng dẫn giảiNếu \(a>0\) thì hàm số \(y=ax^2+bx+c\)
(Trả lời bởi Bùi Thị Vân)
Nghịch biến trên khoảng: \(\left(-\infty;-\dfrac{b}{2a}\right)\);
Đồng biến trên khoảng: \(\left(\dfrac{-b}{2a};+\infty\right)\).
Nếu \(a< 0\) thì hàm số \(y=ax^2+bx+c\):
Nghịch biến trên khoảng: \(\left(\dfrac{-b}{2a};+\infty\right)\);
Đồng biến trên khoảng: \(\left(-\infty;-\dfrac{b}{2a}\right)\).
Chỉ ra khoảng đồng biến, khoảng nghịch biến của hàm số \(y=ax+b\) ?
Thảo luận (1)Hướng dẫn giảia > 0Hàm số đồng biến trên (-∞,\(\dfrac{-b}{2a}\))
Hàm số nghịch biến trên (\(\dfrac{-b}{2a}\), +∞)
a < 0Hàm số đồng biến trên (\(\dfrac{-b}{2a}\), +∞)
Hàm số nghịch biến trên (-∞,\(\dfrac{-b}{2a}\))
(Trả lời bởi qwerty)
Xác định tọa độ của đỉnh, phương trình của trục đối xứng của parabol :
\(y=ax^2+bx+c\)
Thảo luận (1)Hướng dẫn giảiTọa độ đỉnh \(\left(\dfrac{-b}{2a},\dfrac{-\Delta}{4a}\right)\)
Trục đối xứng \(x=\dfrac{-b}{2a}\)
(Trả lời bởi qwerty)
Xác định tọa độ giao điểm của parabol \(y=ax^2+bx+c\) với trục tung ?
Tìm điều kiện để parabol này cắt trục hoành tại hai điểm phân biệt và viết tọa độ của các giao điểm trong trường hợp đó ?
Thảo luận (1)Hướng dẫn giảiĐiều kiện để (P): \(y=ax^2+bx+c\) cắt trục hoành tại hai điểm phân biệt là \(\Delta>0\).
(Trả lời bởi Bùi Thị Vân)
Gọi \(x_1;x_2\) là hoành độ của hai giao điểm. Ta có:
\(x_{1,2}=\dfrac{-b\pm\sqrt{\Delta}}{2a}\);
Tọa độ giao điểm là:
\(A\left(\dfrac{-b+\sqrt{\Delta}}{2a};0\right)\); \(A\left(\dfrac{-b-\sqrt{\Delta}}{2a};0\right)\).
Tìm tập xác định của các hàm số :
a. \(y=\dfrac{2}{x+1}+\sqrt{x+3}\)
b. \(y=\sqrt{2-3x}-\dfrac{1}{\sqrt{1-2x}}\)
c. \(y=\left\{{}\begin{matrix}\dfrac{1}{x+3};\left(x\ge1\right)\\\sqrt{2-x};\left(x< 1\right)\end{matrix}\right.\)
Thảo luận (1)Hướng dẫn giảia) \(\dfrac{2}{x+1}\) xác định với x≠-1, \(\sqrt{x+3}\) xác định với x ≥ -3
Tập xác định của y = là:
D = {x ∈ R/ x + 1 ≠ 0 và x + 3 ≥ 0} = [-3, +∞)\{-1}
Có thể viết cách khác: D = [-3, -1] ∪ (-1, +∞)
b) Tập xác định
D = {x ∈ R/ 2 -3x ≥ 0} ∩ {x ∈ R/ 1-2x ≥ 0}
= [-∞, 2323 ]∩(-∞, 1212) = (-∞, 1212)
c) Tập xác định là:
D = [1, +∞) ∪ (-∞,1) = R
(Trả lời bởi qwerty)
Xét chiều biến thiên và vẽ đồ thị của các hàm số :
a. \(y=\dfrac{1}{2}x-1\)
b. \(y=4-2x\)
c. \(y=\sqrt{x^2}\)
d. \(y=\left|x+1\right|\)
Thảo luận (1)Hướng dẫn giảia) Bảng biến thiên
Đồ thị hàm số
Đồ thị là đường thẳng đi qua 2 điểm:
+ Giao với trục tung P(0,-1)
+ Giao với trục hoành Q(2, 0)
b) Bảng biến thiên
Đồ thị hàm số
Đồ thị là đường thẳng đi qua 2 điểm:
+ Giao với trục tung P(0,4)
+ Giao với trục hoành Q(2, 0)
c) y=√x2y=x2 = |x| ={−x,x≤0x,x>0{−x,x≤0x,x>0
Bảng biến thiên
Đồ thị hàm số
d) y = |x+1| = {−x−1,x≤−1x+1,x>−1{−x−1,x≤−1x+1,x>−1
Bảng biến thiên
Đồ thị hàm số
(Trả lời bởi qwerty)
Lập bảng biến thiên và vẽ đồ thị của các hàm số :
a. \(y=x^2-2x-1\)
b. \(y=-x^2+3x+2\)
Thảo luận (1)Hướng dẫn giảia) Tập xác định D = R
Bảng biến thiên
Đồ thị hàm số
Đồ thị: parabol có đỉnh I(1, -2) với trục đối xứng x = 1
Giao điểm với trục tung là P(0,-1)
Giao điểm với trục hoành A (1-√2, 0) và B((1+√2, 0)
b)
Tập xác định D = R
Đồ thị hàm số
Đồ thị: parabol có đỉnh I \(\left(\dfrac{3}{2},\dfrac{17}{4}\right)\)với trục đối xứng \(x=\dfrac{3}{2}\)
Giao điểm với trục tung là P(0,2)
Giao điểm với trục hoành A \(\left(\dfrac{3-\sqrt{17}}{2},0\right)\) và B\(\left(\dfrac{3+\sqrt{17}}{2},0\right)\)
(Trả lời bởi Hai Binh)