Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Toru
25 tháng 8 2023 lúc 21:11

\(B=1+3+3^2+...+3^{2016}\)

\(3\cdot B=3+3^2+3^3+...+3^{2017}\)

\(3B-B=3+3^2+3^3+...+3^{2017}-\left(1+3+3^2+...+3^{2016}\right)\)

\(2B=3^{2017}-1\)

\(\Rightarrow B=\dfrac{3^{2017}-1}{2}\)

Lê Nguyễn Khôi Nguyên
Xem chi tiết
Ng Ngọc
25 tháng 8 2023 lúc 21:26

\(B=1+3^1+3^2+...+3^{2016}\)

\(3B=3+3^2+3^3+3^4+...+3^{2017}\)

\(3B-B=3^{2017}-1\)

\(B=\dfrac{3^{2017}-1}{2}\)

 

Lê Nguyễn Khôi Nguyên
Xem chi tiết
Toru
25 tháng 8 2023 lúc 21:16

\(B=1+3^1+3^2+...+3^{2016}\)

\(3\cdot B=3+3^2+3^3+...+3^{2016}+3^{2017}\)

\(3B-B=3+3^2+3^3+...+3^{2016}+3^{2017}-\left(1+3^1+3^2+...+3^{2016}\right)\)

\(2B=3^{2017}-1\)

\(\Rightarrow B=\dfrac{3^{2017}-1}{2}\)

Nguyễn Sâu
Xem chi tiết
Akai Haruma
22 tháng 12 2021 lúc 8:55

Lời giải:
$A=1+(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2014}+3^{2015}+3^{2016})$

$=1+3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2014}(1+3+3^2)$
$=1+3.13+3^4.13+....+3^{2014}.13$

$=1+13(3+3^4+...+3^{2014})$ 

$\Rightarrow A-1\vdots 13(1)$

Mặt khác:
$A=1+(3+3^2+3^3+3^4)+....+(3^{2013}+3^{2014}+3^{2015}+3^{2016})$
$=1+3(1+3+3^2+3^3)+....+3^{2013}(1+3+3^2+3^3)$
$=1+(3+...+3^{2013})(1+3+3^2+3^3)$

$=1+40(3+....+3^{2013})$

$\Rightarrow A-1\vdots 5(2)$

Từ $(1); (2)$ mà $(5,13)=1$ nên $A-1\vdots (5.13)$ hay $A-1\vdots 65$

$\Rightarrow A$ chia $65$ dư $1$

Hikaru Akira
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 9 2021 lúc 21:50

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}.\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^{32}-1\right)=\dfrac{3^{32}}{2}-\dfrac{1}{2}\)

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 21:49

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{3^{32}-1}{2}\)

Nguyễn Việt Hà
Xem chi tiết
Ng Ngọc
14 tháng 8 2023 lúc 22:20

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 22:09

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

TIỂU THƯ
Xem chi tiết
Ashshin HTN
9 tháng 9 2018 lúc 8:23

Hôm qua lúc 14:50

ai chơi bang bang 2 kết bạn với mình

Đào Trần Tuấn Anh
9 tháng 9 2018 lúc 8:24

1+1+1+1+1+1+1+1+1+1+! =11 vì ! là giai thừa của 1

1+2+3+4+5 = 15

16+18 = 34

2+34 = 36

32+34-13 = 53

87+18-34-12-3 = 53

1111-1111 = 0

143-32 = 111 

Đỗ Phương Linh
9 tháng 9 2018 lúc 8:26

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 10

1 + 2 + 3 + 4 + 5 = 15

16 + 18 = 24

2 + 34 = 36

32 + 34 - 13 = 53

87 + 18 - 34 - 12 - 3 = 56

1111 - 1111 = 0

143 - 32 = 111

Xem chi tiết
qlamm
13 tháng 12 2021 lúc 23:05

Tham khảo

Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)

3A = 3+32+33+...+3100+31013+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−13101−1

⇒⇒ A = 3101−123101−12

Vậy A = 3101−12

Xem chi tiết
nguyễn thế hùng
15 tháng 12 2021 lúc 13:32

 

A=3 mũ 101-1 phân số2

 

 

 

 

 

Lưu Võ Tâm Như
16 tháng 12 2021 lúc 14:07

\(A=1-3+3^2-3^3+3^4-...-3^{98}-3^{99}+3^{100}\\ 3A=3-3^2+3^3-3^4-...-3^{98}+3^{99}-3^{100}+3^{101}\\ 3A-A=3^{101}-1\\ \Rightarrow A=\dfrac{3^{101}-1}{2}\)

Phan Lâm Thanh Trúc
Xem chi tiết
Nguyễn Thị Thương Hoài
26 tháng 12 2023 lúc 22:59