Cho a3-3ab2 = 19 và b3 - 3a2b = 98. Hãy tính: E= a2 + b2
Cho a3 - 3ab2 = 2 ; b3 - 3a2b = -11.
Tính : M = a2 + b2.
chứng minh các đẳng thức sau
(a-b)2=a2-2ab+b2
(a-b)(a+b)=a2-b2
(a+b)3=a3+3a2b+3ab2+b3
(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2
(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2
(a+3)^3=(a+b)^2*(a+b)
=(a^2+2ab+b^2)(a+b)
=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3
=a^3+3a^2b+3ab^2+b^3
Cho a3-3ab2=5 và b3-3a2b=10. Tính S=a2+b2 phần 2018
Cho a3-3ab2=5 ; b3-3a2b=10
Tính S = 20/6a2+20/6b2
A) Rút gọn biểu thức M =(d2+ b2 + 2)3- (a2 + b2 – 2)3 - 12(a2 + b2)2
B)Cho a+b=1. Hãy tính giá trị của biểu thức N = a3 +b3 + 3ab
Mng giải hộ mik với ạ, e cảm ơn, e đang cần gấp á
b: Ta có: \(N=a^3+b^3+3ab\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)
\(=1-3ab+3ab\)
=1
Rút gọn: M= (a2+b2+2)3-(a2+b2-2)3-12(a2+b2)2
Cho a + b =1. Hãy tính giá trị của biểu thức N= a3+b3+3ab
\(N=a^3+b^3+3ab\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)
=1
\(M=\left(a^2+b^2+2-a^2-b^2+2\right)\left[\left(a^2+b^2+2\right)^2+\left(a^2+b^2+2\right)\left(a^2+b^2-2\right)+\left(a^2+b^2-2\right)^2\right]-12\left(a^2+b^2\right)^2\\ M=4\left(a^4+b^4+4+4a^2+4b^2+2a^2b^2+\left(a^2+b^2\right)^2-4+a^4+b^4+4-4a^2-4b^2+2a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2-3a^4-6a^2b^2-3b^4\right)\\ M=4\cdot4=164\)
Cho a > 0, b > 0, nếu a < b, hãy chứng tỏ: a 2 < b 2 và a 3 < b 3
Từ (1) và (2) suy ra: a 2 < b 2
Ta có: a < b ⇒ a 3 < a 2 b (3)
a < b ⇒ a b 2 < b 3 (4)
a < b ⇒ a.a.b < a.b.b ⇒ a 2 b < a b 2 (5)
Từ (3), (4) và (5) ⇒ a 3 < b 3
Cho a+b = -3, ab = -2. Hãy tính giá trị của:
a2 + b2, a4 + b4, a3 + b3, a5 + b5, a7 + b7.
\(a^2+b^2=\left(a+b\right)^2-2ab=\left(-3\right)^2-2\cdot\left(-2\right)=9+4=13\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(-3\right)^3-3\cdot\left(-2\right)\cdot\left(-3\right)\)
\(=-27-18=-45\)
chứng minh :
a3 +b3 =(a+b).(a2 -ab +b2)
a3 -b3 =(a-b).(a2 +ab +b2)
VP `=(a+b)(a^2-ab+b^2)`
`=a^3-a^2b+ab^2+a^2b-ab^2+b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)+b^3`
`=a^3+b^3`
.
VP `=(a-b)(a^2+ab+b^2)`
`=a^3+a^2b+ab^2-a^2b-ab^2-b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)-b^3`
`=a^3-b^3`
Ta có: \(a^3+b^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2+2ab+b^2-3ab\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
Ta có: \(a^3-b^3\)
\(=\left(a-b\right)^3+3ab\left(a-b\right)\)
\(=\left(a-b\right)\left(a^2-2ab+b^2+3ab\right)\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)\)