Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thị Thanh
Xem chi tiết
Nguyễn Hoài Nam
Xem chi tiết
HHV
Xem chi tiết
Phương An
7 tháng 7 2017 lúc 10:35

Kẻ đường cao AD, BE và CF.

\(\Delta AEF~\Delta ABC\left(c.g.c\right)\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\cos^2A\)

\(\Delta BFD~\Delta BCA\left(c.g.c\right)\Rightarrow\dfrac{S_{BFD}}{S_{BCA}}=\left(\dfrac{BF}{BC}\right)^2=\cos^2B\)

\(\Delta CDE~\Delta CAB\left(c.g.c\right)\Rightarrow\dfrac{S_{CDE}}{S_{CAB}}=\left(\dfrac{CE}{CB}\right)^2=\cos^2C\)

\(\sin^2A+\sin^2B+\sin^2C=3-\left(\cos^2A+\cos^2B+\cos^2C\right)\)

\(=3-\left(\dfrac{S_{AEF}}{S_{ABC}}+\dfrac{S_{BFD}}{S_{BCA}}+\dfrac{S_{CDE}}{S_{CAB}}\right)>3-\dfrac{S_{ABC}}{S_{ABC}}=2\left(\text{đ}pcm\right)\)

Nguyễn Thành Trương
6 tháng 9 2019 lúc 19:51

Ta có:
\(A + B + C = π \Rightarrow C = π - (A + B) \Rightarrow cosC = cos[π - (A + B)] = - cos(A + B) \)

\(P = Sin^2A+Sin^2B+Sin^2C = \dfrac{1 - cos2A}2 + \dfrac{1 - cos2B}2 + 1 - cos^2C\)

\(= 2 - \dfrac{cos2A + cosB}2 - cos^2(A+B)\)

\(= 2 - cos(A+B).cos(A-B) - cos^2(A+B)\)

\(= 2 - cos(A+B)[cos(A-B) + cos(A+B)]\)

\(= 2 - cos(A+B).2cosA.cosB\)

\(= 2 + 2.cosC.cosA.cosB \)
\(A ,B , C\) là các góc nhọn \(\Rightarrow\) \(cosC.cosA.cosB > 0\)

\(\Rightarrow\) \(P = Sin^2A+Sin^2B+Sin^2C > 2\)

Đoàn Minh Huy
Xem chi tiết
Bạn Và Bè
Xem chi tiết
Phạm Đình Tân
5 tháng 11 2021 lúc 8:38
Giải. Áp dụng công thức lượng giác.

Bài tập Tất cả

Khách vãng lai đã xóa
khong có
Xem chi tiết
Mi Trần
Xem chi tiết
oOo Sát thủ bóng đêm oOo
11 tháng 7 2018 lúc 16:04

ai tích mình mình tích lại cho

Thiên Yết
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 1 2021 lúc 0:19

\(\left\{{}\begin{matrix}sinA=\dfrac{a}{2R}\\sinB=\dfrac{b}{2R}\\sinC=\dfrac{c}{2R}\end{matrix}\right.\) \(\Rightarrow sin^2A+sin^2B=\dfrac{a^2+b^2}{4R^2}=\dfrac{9+36}{4R^2}=\dfrac{45}{4R^2}\)

Trong khi đó \(3sin^2C=\dfrac{3.17}{4R^2}=\dfrac{51}{4R^2}\)

Đề bài sai

Khánh Ngọc
Xem chi tiết