cho tam giác ABC. cm:
\(\dfrac{\cos^2A+\cos^2B}{\sin^2A+\sin^2B}\le\dfrac{1}{2}\left(\cot^2A+\cot^2B\right)\)
Cho tam giác ABC có a=3, b=6, c=\(\sqrt[]{17}\)
Cmr : \(\sin^2A+sin^2B=3sin^2C\)
Với mọi x, y, z > 0 và ΔABC bất, chứng minh rằng : \(\dfrac{cosA}{x}+\dfrac{cosB}{y}+\dfrac{cosC}{z}\) ≤ \(\dfrac{x^2+y^2+z^2}{2xyz}\)
CMR với mọi số nguyên a,b,c ta đều có BĐT:
\(\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\dfrac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\dfrac{c^2}{\left(2c+a\right)\left(2c+b\right)}\le\dfrac{1}{3}\)
Với mọi số thực dương a,b,c. chứng minh rằng:
4(\(\dfrac{a^2b}{c}+\dfrac{b^2c}{a}+\dfrac{c^2a}{b}\))+8\(\left(\dfrac{c}{\left(2a+b\right)^2}+\dfrac{b}{\left(2c+a\right)^2}+\dfrac{a}{\left(2b+c\right)^2}\right)\ge3\left(a+b+c\right)\)
Hãy chứng min rằng :
1) \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2},\forall a,b,c,d\in R\)
2) \(\sqrt{4\cos^2x.\cos^2y+\sin^2\left(x-y\right)}+\sqrt{4\sin^2x.\sin^2y+\sin^2\left(x-y\right)}\ge2,\forall x,y\in R\)
cho các số thực a,b,c dương chứng minh rằng a+b+c≤\(\frac{1}{2}\left(a^2b+b^2c+c^2a+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
cmr với mọi số thực a, b, c dươngta đều có bđt
\(\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\dfrac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\dfrac{a^2}{\left(2c+a\right)\left(2c+b\right)}\)<=3
CMR: biểu thức sau không phụ thuộc vào x
P=sin4x+sin4\(\left(x+\frac{\pi}{4}\right)+sin^4\left(x+\frac{\pi}{2}\right)+sin^4\left(x+\frac{3\pi}{4}\right)\)